The Measurement of Three-Dimensional Flow Field in an Axial Flow Fan Using PDA

Author(s):  
Zhaohui Du ◽  
Wanlai Lin ◽  
Xiaocheng Zhu ◽  
Yan Zhao

In this paper, a three-color dual-beam PDA (Particle Dynamic Analyzer) system (made by DANTEC Measurement Technology) is used to measure the three-dimensional velocity of an axial flow fan. Due to the geometrical limit of fan rotor, non-orthogonal velocity components are measured first, from which the orthogonal three-dimensional components of the velocity field are computed through transformation equations. The detailed flow fields at 15 axial locations upstream, inside and at the exit of the rotor are measured, respectively. On each cross section perpendicular to the rotating axis, the flow field measurement at 15 different radial locations from 50% of the blade span to the region inside the tip clearance (between the tip blade and the casing wall) are taken. The experimental technique is described, and the three dimensional flow fields (including the tip clearance flow) are presented and analyzed.

1992 ◽  
Vol 114 (3) ◽  
pp. 675-685 ◽  
Author(s):  
A. Goto

The effect of difference in rotor tip clearance on the mean flow fields and unsteadiness and mixing across a stator blade row were investigated using hot-wire anemometry, pressure probes, flow visualization, and the ethylene tracer-gas technique on a single-stage axial flow compressor. The structure of the three-dimensional flow fields was discussed based on results of experiments using the 12-orientation single slanted hotwire technique and spectrum analysis of velocity fluctuation. High-pass filtered measurements of turbulence were also carried out in order to confirm small-scale velocity fluctuation, which is more realistically referred to as turbulence. The span-wise distribution of ethylene gas spreading, estimated by the measured small-scale velocity fluctuation at the rotor exit, agreed quite well with that which was experimentally measured. This fact suggests the significant role of turbulence, generated within the rotor, in the mixing process across the downstream stator. The value of the maximum mixing coefficient in the tip region was found to increase linearly as the tip clearance became enlarged, starting from the value at midspan.


1985 ◽  
Vol 107 (2) ◽  
pp. 436-448 ◽  
Author(s):  
M. J. Pierzga ◽  
J. R. Wood

An experimental investigation of the three-dimensional flow field through a low aspect ratio, transonic, axial-flow fan rotor has been conducted using an advanced laser anemometer (LA) system. Laser velocimeter measurements of the rotor flow field at the design operating speed and over a range of through flow conditions are compared to analytical solutions. The numerical technique used herein yields the solution to the full, three-dimensional, unsteady Euler equations using an explicit time-marching, finite volume approach. The numerical analysis, when coupled with a simplified boundary layer calculation, generally yields good agreement with the experimental data. The test rotor has an aspect ratio of 1.56, a design total pressure ratio of 1.629 and a tip relative Mach number of 1.38. The high spatial resolution of the LA data matrix (9 radial × 30 axial × 50 blade-to-blade) permits details of the transonic flow field such as shock location, turning distribution, and blade loading levels to be investigated an compared to analytical results.


Author(s):  
Xiaocheng Zhu ◽  
Wanlai Lin ◽  
Zhaohui Du ◽  
Yan Zhao

The three-dimensional flow field in the tip region of an isolated axial flow fan rotor with two different tip clearances are investigated using a three-color, dual-beam PDA system (Particle Doppler Anemometer, DANTEC Measurement Technology). The global performance is also obtained, and is compared favorably with CFD (Computational Fluid Dynamics) modeling of this fan flow at a zero tip clearance. The detailed flow field measurements are taken at 15 axial locations upstream, inside and at the exit of the rotor. In the radial direction, 15 measurement locations are arranged from 50% of the blade span to the casing wall, mainly focusing on the tip region from 90% of the blade span location to the casing wall (about 10 measurement locations). The PDA data has provided a quantitative understanding of the flow phenomena in the tip region of the fan rotor. For both tip clearances, it has been observed that the tip leakage flow rolls up into a tip leakage vortex. Due to the rotation of the rotor, this tip leakage vortex moves away from the suction surface of the fan blade. A reverse flow is induced in the main flow passage because of the tip leakage vortex. The depth and extent of the tip leakage vortex grow noticeably with the increase of the tip clearance.


2008 ◽  
Author(s):  
Friedrich-Karl Benra ◽  
Hans Josef Dohmen

In highly loaded axial flow pumps considerable changes of the flow behavior are known when altering the flow rate from design point operation to part load operation. The flow structure which is changing from stable operating conditions to stalled flow conditions has been investigated experimental by Kosyna and Stark. The measured results are compared to results obtained by numerical simulations in a previous paper of the authors. Time dependent three dimensional flow fields in this axial flow pump have been investigated by unsteady Reynolds averaged Navier-Stokes simulations. The time resolved flow fields are compared to the time averaged results of the measurements for the design point and also for part load operating conditions. The change in the vortex structure induced by the tip leakage flow is investigated in detail for different conditions of operation. Also the part load recirculation vortex dominating the rotor tip flow at deep stall conditions as well as the cross passage vortex is visualized by evaluating the numerical results.


Sign in / Sign up

Export Citation Format

Share Document