Oscillating Flow in Adverse Pressure Gradients

Author(s):  
Barton L. Smith ◽  
Kristen V. Mortensen ◽  
Spencer Wendel

Separating oscillating flow in an internal adverse pressure gradient geometry is studied experimentally. Phase-locked PIV measurements and simultaneous pressure measurements reveal that during the accelerating portion of the cycle, the flow remains attached in spite of a very large adverse pressure gradient. During the decelerating portion of the cycle, the flow is more prone to separation. The duration and extent of the separation depend strongly on the oscillation displacement amplitude relative to the cross-stream dimension. In some cases, the flow separates but reattaches as the separated shear layer is accelerated temporally. The time-varying pressure measurements are used to determine the resultant minor losses for the flow in each direction. These are found to be an increasing function of displacement amplitude and independent of the Reynolds number.

Author(s):  
Barton L. Smith ◽  
Cameron V. King

Separating oscillating and pulsating flows in an internal adverse pressure gradient geometry are studied experimentally. Time-resolved PIV measurements and simultaneous pressure measurements reveal that, in oscillating flow, during the accelerating portion of the cycle, the flow remains attached in spite of a very large adverse pressure gradient. During the decelerating portion of the cycle, the flow is more prone to separation. The duration and extent of the separation depend strongly on the oscillation displacement amplitude relative to the cross-stream dimension. In some cases, the flow separates but reattaches as the separated shear layer is accelerated temporally. The time-varying pressure measurements are used to determine the resultant minor losses for the flow in each direction. These are found to be an increasing function of displacement amplitude and a decreasing function of the Reynolds number and can be greater than or less than those for steady flow. Pressure and velocity measurements are presented for pulsating flow with various DC components.


Author(s):  
Cameron V. King ◽  
Barton L. Smith

Separating oscillating and pulsating flows in an internal adverse pressure gradient geometry are studied experimentally. Simultaneous velocity-pressure measurements demonstrate that the minor losses associated with oscillating flow in an adverse pressure gradient geometry can be smaller or larger than for steady flow. The minor losses grow with increasing displacement amplitude in the range 10 < L0/h < 37. Losses decrease with Reδ in the range of 380 < Re < 740. The extent and duration of boundary separation increase with L0/h. It is found that the losses increase with increasing diffuser angle for 12° < θ < 30°. The addition of steady flow can cause the in decrease if the flow becomes more turbulent as a result, or increase when the flow was already turbulent.


Author(s):  
Frank J. Aldrich

A physics-based approach is employed and a new prediction tool is developed to predict the wavevector-frequency spectrum of the turbulent boundary layer wall pressure fluctuations for subsonic airfoils under the influence of adverse pressure gradients. The prediction tool uses an explicit relationship developed by D. M. Chase, which is based on a fit to zero pressure gradient data. The tool takes into account the boundary layer edge velocity distribution and geometry of the airfoil, including the blade chord and thickness. Comparison to experimental adverse pressure gradient data shows a need for an update to the modeling constants of the Chase model. To optimize the correlation between the predicted turbulent boundary layer wall pressure spectrum and the experimental data, an optimization code (iSIGHT) is employed. This optimization module is used to minimize the absolute value of the difference (in dB) between the predicted values and those measured across the analysis frequency range. An optimized set of modeling constants is derived that provides reasonable agreement with the measurements.


Author(s):  
Jeffrey P. Bons ◽  
Stephen T. McClain

Experimental measurements of heat transfer (St) are reported for low speed flow over scaled turbine roughness models at three different freestream pressure gradients: adverse, zero (nominally), and favorable. The roughness models were scaled from surface measurements taken on actual, in-service land-based turbine hardware and include samples of fuel deposits, TBC spallation, erosion, and pitting as well as a smooth control surface. All St measurements were made in a developing turbulent boundary layer at the same value of Reynolds number (Rex≅900,000). An integral boundary layer method used to estimate cf for the smooth wall cases allowed the calculation of the Reynolds analogy (2St/cf). Results indicate that for a smooth wall, Reynolds analogy varies appreciably with pressure gradient. Smooth surface heat transfer is considerably less sensitive to pressure gradients than skin friction. For the rough surfaces with adverse pressure gradient, St is less sensitive to roughness than with zero or favorable pressure gradient. Roughness-induced Stanton number increases at zero pressure gradient range from 16–44% (depending on roughness type), while increases with adverse pressure gradient are 7% less on average for the same roughness type. Hot-wire measurements show a corresponding drop in roughness-induced momentum deficit and streamwise turbulent kinetic energy generation in the adverse pressure gradient boundary layer compared with the other pressure gradient conditions. The combined effects of roughness and pressure gradient are different than their individual effects added together. Specifically, for adverse pressure gradient the combined effect on heat transfer is 9% less than that estimated by adding their separate effects. For favorable pressure gradient, the additive estimate is 6% lower than the result with combined effects. Identical measurements on a “simulated” roughness surface composed of cones in an ordered array show a behavior unlike that of the scaled “real” roughness models. St calculations made using a discrete-element roughness model show promising agreement with the experimental data. Predictions and data combine to underline the importance of accounting for pressure gradient and surface roughness effects simultaneously rather than independently for accurate performance calculations in turbines.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3400
Author(s):  
Yufei Zhang ◽  
Chongyang Yan ◽  
Haixin Chen

An airfoil inverse design method is proposed by using the pressure gradient distribution as the design target. The adjoint method is used to compute the derivatives of the design target. A combination of the weighted drag coefficient and the target dimensionless pressure gradient is applied as the optimization objective, while the lift coefficient is considered as a constraint. The advantage of this method is that the designer can sketch a rough expectation of the pressure distribution pattern rather than a precise pressure coefficient under a certain lift coefficient and Mach number, which can greatly reduce the design iteration in the initial stage of the design process. Multiple solutions can be obtained under different objective weights. The feasibility of the method is validated by a supercritical airfoil and a supercritical natural laminar flow airfoil, which are designed based on the target pressure gradients on the airfoils. Eight supercritical airfoils are designed under different upper surface pressure gradients. The drag creep and drag divergence characteristics of the airfoils are numerically tested. The shockfree airfoil demonstrates poor performance because of a high suction peak and the double-shock phenomenon. The adverse pressure gradient on the upper surface before the shockwave needs to be less than 0.2 to maintain both good drag creep and drag divergence characteristics.


Author(s):  
Jiasen Hu ◽  
Torsten H. Fransson

A numerical study has been performed to compare the overall performance of three transition models when used with an industrial Navier-Stokes solver. The three models investigated include two experimental correlations and an integrated eN method. Twelve test cases in realistic turbomachinery flow conditions have been calculated. The study reveals that all the three models can work numerically well with an industrial Navier-Stokes code, but the prediction accuracy of the models depends on flow conditions. In general, all the three models perform comparably well to predict the transition in weak or moderate adverse pressure-gradient regions. The two correlations have the merit if the transition starts in strong favorable pressure-gradient region under high Reynolds number condition. But only the eN method works well to predict the transition controlled by strong adverse pressure gradients. The three models also demonstrate different capabilities to model the effects of turbulence intensity and Reynolds number.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Martin Konopka ◽  
Wilhelm Jessen ◽  
Matthias Meinke ◽  
Wolfgang Schröder

In order to analyze the interaction of multiple rows of film cooling holes in flows at adverse pressure gradients, large-eddy simulations (LESs) are performed. The considered three-row cooling configuration consists of inclined cooling holes at an angle of 30 deg with a lateral pitch of p/D=3 and a streamwise spacing of l/D=6. The cooling holes possess a fan-shaped exit geometry with lateral and streamwise expansions. For each cooling row the complete internal flow is computed. Air and CO2 are injected in order to investigate the influence of an increased density ratio on the film cooling physics at adverse pressure gradients. The CO2 injected at the same blowing rate as air shows a higher magnitude of the Reynolds shear stress component and, thus, an enhanced mixing downstream of the cooling holes. The LES results of the air and CO2 configurations are compared to the corresponding particle-image velocimetry (PIV) measurements and show a convincing agreement in terms of the averaged streamwise velocity and streamwise velocity fluctuations. Furthermore, the cooling effectiveness is investigated for a zero and an adverse pressure gradient configuration with a temperature ratio at gas turbine conditions. For the adverse pressure gradient case, reduced temperature levels off the wall are observed. However, the cooling effectiveness shows only minor differences compared to the zero pressure gradient flow. The turbulent Schmidt number at CO2 injection shows large variations. Just downstream of the injection it attains low values, whereas high values are detected in the upper mixing zone of the cooling flow and the freestream at each film cooling row.


1966 ◽  
Vol 26 (3) ◽  
pp. 481-506 ◽  
Author(s):  
A. E. Perry

The results of a detailed mean velocity survey of a smooth-wall turbulent boundary layer in an adverse pressure gradient are described. Close to the wall, a variety of profiles shapes were observed. Progressing in the streamwise direction, logarithmic, ½-power, linear and$\frac{3}{2}$-power distributions seemed to form, and generally each predominated at a different stage of the boundary-layer development. It is believed that the phenomenon occurred because of the nature of the pressure gradient imposed (an initially high gradient which fell to low values as the boundary layer developed) and attempts are made to describe the flow by an extension of the regional similarity hypothesis proposed by Perry, Bell & Joubert (1966). Data from other sources is limited but comparisons with the author's results are encouraging.


Author(s):  
Martin Konopka ◽  
Wilhelm Jessen ◽  
Matthias Meinke ◽  
Wolfgang Schröder

To analyze the interaction of multiple rows of film cooling holes in flows at adverse pressure gradients large-eddy simulations (LES) are performed. The considered three-row cooling configuration consists of inclined cooling holes at an angle of 30° with a lateral pitch p/D = 3 and a streamwise spacing l/D = 6. The cooling holes possess a fan-shaped exit geometry with lateral and streamwise expansions. For each cooling row the complete internal flow was computed. Air and CO2 are injected to investigate the influence of an increased density ratio on the film cooling physics at adverse pressure gradients. CO2 injected at the same blowing rate as air shows a higher magnitude of the Reynolds shear stress component and thus an enhanced mixing downstream of the cooling holes. The LES results of the air and CO2 configurations are compared to the corresponding particle-image velocimetry (PIV) measurements and show a convincing agreement in terms of averaged streamwise velocity and streamwise velocity fluctuations. Furthermore the cooling effectiveness is investigated for a zero and an adverse pressure gradient configuration with a temperature ratio at gas turbine conditions. For the adverse pressure gradient case reduced temperature levels off the wall are observed. However, the cooling effectiveness shows only minor differences compared to the zero pressure gradient flow. The turbulent Schmidt number at CO2 injection shows large variations. Just downstream of the injection it attains low values, whereas high values are detected in the upper mixing zone of the cooling flow and the freestream at each film cooling row.


Author(s):  
Junshin Park

Predicitve capabilities of Reynolds Averaged Navier-Stokes (RANS) techniques have been assessed using SST k–ω model and Spalart-Allmaras model by comparing its results with direct numerical simulation (DNS) results. It has been shown that Spalart-Allmaras and SST k–ω model predict an earlier separation point and a bigger recirculation bubble as compared to the DNS result. Velocity profiles predicted by RANS for both models closely match with DNS results for the steady adverse pressure gradient case. However, the RANS fail to predict correct velocity profiles for unsteady adverse pressure gradients not only for inside the bubble but also after the reattachment zone. To provide the backgrounds for improving RANS models, these differences are explained with Reynolds stress and eddy viscosity which differ between the steady and unsteady adverse pressure gradient RANS cases.


Sign in / Sign up

Export Citation Format

Share Document