Active Flow Control on Low-Pressure Turbine Blades Using Synthetic Jets

Author(s):  
Shirdish Poondru ◽  
Urmila Ghia ◽  
Karman Ghia

The operating Reynolds numbers (Re) for a low-pressure turbine (LPT) in an aircraft engine can drop below 25,000 during high-altitude cruise conditions. At these low Reynolds numbers, the boundary layer on the LPT blade is largely laminar, and is susceptible to separation on the aft portion of the blade suction surface. This separation is detrimental and causes a significant loss in the engine efficiency. The objective of the current research is to control this separation, and minimize the associated losses by numerically implementing an active flow control strategy. Unlike passive flow control techniques, active flow control (AFC) techniques can be turned on and off depending on the requirement for flow control. In the present paper, we numerically investigate the flow through an LPT cascade at a chord inlet Reynolds number of 25,000 with active separation control using synthetic jets and synthetic vortex-generator jets (VGJ’s). Synthetic jets hold an advantage over steady or pulsed jets in that they require no net mass flow, i.e., synthetic jets are formed entirely from the working fluid of the flow system in which they are deployed and, thus, can transfer linear momentum to the flow system without net mass injection across the flow boundary. In the LPT environment, this means that no compressor bleed air is required. While LPT separation control using steady and pulsed VGJs has been numerically investigated before, AFC on an LPT blade by synthetic jets and synthetic VGJs has not yet been numerically investigated. The geometrical difference between a synthetic jet and synthetic VGJ is the angle at which the jet enters the main flow. A synthetic jet enters the main flow normal to the surface, and on the other hand, a synthetic VGJ enters at a certain angle to the wall (pitch angle) and at a certain angle to the main flow (skew angle). For the present case, the VGJs are oriented at 30° to the surface and 90° to the main flow. In addition to the angle at which these two jets enter the main flow, these flow control mechanisms differ in the way they delay or avoid separation. Synthetic jets generate turbulent spots which energize the flow, whereas synthetic VGJ’s generate streamwise vortices which enhance mixing. The relative magnitudes of the effects of turbulence and streamwise vortices in enhancing mixing are being investigated. The results for both control mechanisms will be compared to each other, and with experimental data. An MPI-based higher-order accurate, Chimera version of the FDL3DI flow solver developed by the Air Force Research Laboratory at Wright Patterson Air Force Base, is extended for the present turbomachinery application.

2006 ◽  
Author(s):  
Marshall C. Galbraith ◽  
Amit Kasliwal ◽  
Kirti Ghia ◽  
Urmila Ghia

High altitude aircraft experience a large drop in the Reynolds number (Re) from take off conditions to cruise conditions. It has been shown in previous research performed by Simon and Volino [1] that this reduction in Re number causes the flow inside the turbine cascades to become laminar, and separate more readily on the suction side of the turbine blade. This boundary-layer separation greatly reduces the efficiency of the turbine and aircraft engine as a whole, and therefore is undesirable. To prevent this loss of efficiency, research will be pursued for active and passive means to delay and/or eliminate the flow separation. Lake et al. [2] used passive boundary layer trip, dimples, and V-grooves in an extensive study to reduce separation on the Pak-B turbine blade. Although these passive techniques were able to reduce the separation at fixed Re numbers, an active flow control method is needed for more efficient separation reduction over a range of Re numbers. Currently, researchers are investigating several different active flow control devices, including pulsating synthetic jets, vortex generator jets (VGJ), and moving protuberances. The proposed study intends to further investigate the mechanism of flow control via synthetic jets, which alternate between suction and blowing, on a low pressure turbine blade utilizing a Large Eddy Simulation (LES) Computational Fluid Dynamics (CFD) solver. Optimum values of the associated parameters such as jet angle, blowing ratio, frequency, duty cycle, etc., of the synthetic jets will be determined. However, before investigation of the effectiveness of synthetic jets, the CFD simulation will be validated with experimental data on VGJ. A description of the implementation is presented along with preliminary results.


Author(s):  
V Zander ◽  
M Hecklau ◽  
W Nitsche ◽  
A Huppertz ◽  
M Swoboda

This article presents the potential of active flow control to increase the aerodynamic performance of highly loaded turbomachinery compressor blades. Experimental investigations on a large-scale compressor cascade equipped with 30 synthetic jet actuators mounted to the sidewalls and the blades themselves have been carried out. Results for a variation of the inflow angle, the jet amplitude, and the actuation frequency are presented. The wake measurements show total pressure loss reductions of nearly 10 per cent for the synthetic jet actuation. An efficiency calculation reveals that the energy saved by actuation is nearly twice the energy consumption of the synthetic jets.


Author(s):  
Ehsan Asgari ◽  
Mehran Tadjfar

In this study, we have applied and compared two active flow control (AFC) mechanisms on a pitching NACA0012 airfoil at Reynolds number of 1 × 106 using 2-D computational fluid dynamics (CFD). These mechanisms are continuous blowing and suction which are applied separately on the airfoil which pitches around its quarter-chord in a sinusoidal motion. The location for suction and blowing was determined in our previous study based on the formation of a counter clock-wise vortex near the leading-edge. In our current study, we have compared the effectiveness of pure blowing and pure suction in suppressing the dynamic stall vortex (DSV) which is the main contributor to the drag increase, particularly near the maximum angle of attack (AOA) and in early downstroke motion. The blowing/suction slot is considered as a dent on the airfoil surface which enables the AFC to perform in a tangential manner. This configuration would allow blowing jet to penetrate further downstream and was shown to be more effective compared to a cross-flow orientation. We have compared the two aforementioned mechanisms in terms of hysteresis loops of lift and drag coefficients and have demonstrated the dynamics of flow in controlled and uncontrolled situations.


2022 ◽  
Author(s):  
Marcel Ilie ◽  
Jackson Asiatico ◽  
Matthew Chan

2015 ◽  
Vol 741 ◽  
pp. 475-480
Author(s):  
Na Gao ◽  
Chen Pu ◽  
Bao Chen

2nd order implicit format is implemented in the Navier-Stokes code to deal with instantaneous item unsteady flows. Three simulations are made to testify the method on flow control. First, the external flow fields of synthetic jets are simulated, the mean velocity on the center line, the jet width and velocity distribution are compared well with experimental results. Secondly, the flow fields of synthetic jet in a crossflow are simulated, orifice slot, the mean velocity on the center line and velocity distribution are compared well with experimental results. Finally, the flow control experiments on separation of airfoil are simulated, control methods include steady suction and synthetic jets. Both methods show their ability to favorably effect the flow separation, shortening the length of separation bubble and improving the pressure levels in separation areas in different degrees.


Author(s):  
Yong Qin ◽  
Ruoyu Wang ◽  
Yanping Song ◽  
Fu Chen ◽  
Huaping Liu

Numerical investigations on the control effects of synthetic jets are conducted upon a highly loaded compressor stator cascade. The influence of forcing parameters including actuation frequency, jet amplitude and slot location are analyzed in detail with the single-slit synthetic jet. Besides, a new slot arrangement is put forward for the purpose of effectively controlling flow separation. Simulation results validate the remarkable effectiveness of the single-slit synthetic jet on controlling flow separation. Owing to the coupling effect between the jet and the main flow, the actuation appears to be most efficient under the characteristic frequency of the main flow passing through the airfoil. Additionally, with the increase of jet momentum coefficient, the control effect is enhanced at first and then decreased, depending on the two aspects: the improvements of aerodynamic performance by momentum injection and the additional flow losses caused by the jet. Compared to other actuator configurations, the segment synthetic jet with three sections can more effectively deflect the end-wall cross flow and thus impede the development of corner vortex, which helps to restrain the accumulation of low momentum fluid towards the corner, emphasizing the importance of slot arrangement. Accordingly, under the optimum condition, the total pressure loss coefficient gains a 15.8% reductions and the static pressure rise coefficient is increased by 5.01%.


Sign in / Sign up

Export Citation Format

Share Document