Scale Adaptive Simulation of Flows Past an Airfoil After Stall

Author(s):  
Lei Du ◽  
Fangfei Ning

The Scale Adaptive Simulation (SAS) models can keep standard RANS capabilities in stable flow regions but resolve turbulent structures in unsteady regions of flow field like LES. This RANS/LES property of SAS model relies on the v. Karman length-scale as a scale determining variable, which allows the model to automatically adapt to the appropriate length-scales in the simulated flows. Although SAS is young and still in developing, it has been proved to be very suitable for the predictions of massive separation flows. In the current study, the SST-SAS model is implemented in an in-house CFD code. First, the test case of decaying homogenous isotropic turbulence is selected for calibrating a constant associated with high wave number damping. Then, the simulation of flow past NACA 0021 airfoil at 60° attack angle is carried out for the validation of this turbulence model in our code. After that, the numerical results of NACA 0021 airfoil at a range of attack angles after stall are also presented for the comprehensive understanding of the SAS model.

Author(s):  
Debabrata Mahapatra ◽  
Jaydeep Basani ◽  
Samir Rida

The complex flow phenomena inside a gas turbine combustor demands alternative simulation methods to the Reynolds Averaged Navier-Stokes (RANS) model, where a portion of turbulence scales is resolved inside the flow domain. Large Eddy Simulation (LES) is the most-widely acknowledged method for its attractive feature of resolving large turbulent structures down to the grid limit for the entire flow domain. However, for practical industrial problems where the Reynolds number is high and the flow domain is large, the grid resolution for LES becomes excessively high making it computationally very expensive. Scale Adaptive Simulation (SAS), on the other hand, adjusts to the resolved structures in an Unsteady RANS (URANS) simulation resulting in LES-like behavior in unsteady regions of the flow field. At the same time, it provides RANS capabilities in the stable flow regions. It allows a larger time step than LES resulting in the possibility of computation time advantage with LES-like solution fidelity. In the current paper, the SAS model is compared to the LES model for a Honeywell combustor using the commercial CFD code ANSYS FLUENT. Several time-steps are considered for SAS simulations. Results show that SAS is promising in terms of predicting combustor performance parameters like LES, but with a substantially reduced turn-around time.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 46 ◽  
Author(s):  
Hideaki Miura

Incompressible magnetohydrodynamic (MHD) turbulence under influences of the Hall and the gyro-viscous terms was studied by means of direct numerical simulations of freely decaying, homogeneous and approximately isotropic turbulence. Numerical results were compared among MHD, Hall MHD, and extended MHD models focusing on differences of Hall and extended MHD turbulence from MHD turbulence at a fully relaxed state. Magnetic and kinetic energies, energy spectra, energy transfer, vorticity and current structures were studied. The Hall and gyro-viscous terms change the energy transfer in the equations of motions to be forward-transfer-dominant while the magnetic energy transfer remains backward-transfer-dominant. The gyro-viscosity works as a kind of hyper-diffusivity, attenuating the kinetic energy spectrum sharply at a high wave-number region. However, this term also induces high-vorticity events more frequently than MHD turbulence, making the turbulent field more intermittent. Vortices and currents were found to be transformed from sheet to tubular structures under the influences of the Hall and/or the gyro-viscous terms. These observations highlight features of fluid-dynamic aspect of turbulence in sub-ion-scales where turbulence is governed by the ion skin depth and ion Larmor radius.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 248
Author(s):  
Sencer Yücesan ◽  
Daniel Wildt ◽  
Philipp Gmeiner ◽  
Johannes Schobesberger ◽  
Christoph Hauer ◽  
...  

A systematic variation of the exposure level of a spherical particle in an array of multiple spheres in a high Reynolds number turbulent open-channel flow regime was investigated while using the Large Eddy Simulation method. Our numerical study analysed hydrodynamic conditions of a sediment particle based on three different channel configurations, from full exposure to zero exposure level. Premultiplied spectrum analysis revealed that the effect of very-large-scale motion of coherent structures on the lift force on a fully exposed particle resulted in a bi-modal distribution with a weak low wave number and a local maximum of a high wave number. Lower exposure levels were found to exhibit a uni-modal distribution.


Author(s):  
V. Solovej ◽  
K. Gorbunov ◽  
V. Vereshchak ◽  
O. Gorbunova

A study has been mode of transport-controlled mass transfer-controlled to particles suspended in a stirred vessel. The motion of particle in a fluid was examined and a method of predicting relative velocities in terms of Kolmogoroff’s theory of local isotropic turbulence for mass transfer was outlined. To provide a more concrete visualization of complex wave form of turbulence, the concepts of eddies, of eddy velocity, scale (or wave number) and energy spectrum, have proved convenient. Large scale motions of scale contain almost all of the energy and they are directly responsible for energy diffusion throughout the stirring vessel by kinetic and pressure energies. However, almost no energy is dissipated by the large-scale energy-containing eddies. A scale of motion less than is responsible for convective energy transfer to even smaller eddy sires. At still smaller eddy scales, close to a characteristic microscale, both viscous energy dissipation and convection are the rule. The last range of eddies has been termed the universal equilibrium range. It has been further divided into a low eddy size region, the viscous dissipation subrange, and a larger eddy size region, the inertial convection subrange. Measurements of energy spectrum in mixing vessel are shown that there is a range, where the so called -(5/3) power law is effective. Accordingly, the theory of local isotropy of Kolmogoroff can be applied because existence of the internal subrange. As the integrated value of local energy dissipation rate agrees with the power per unit mass of liquid from the impeller, almost all energy from the impeller is viscous dissipated in eddies of microscale. The correlation for mass transfer to particles suspended in a stirred vessel is recommended. The results of experimental study are approximately 12 % above the predicted values.


2017 ◽  
Vol 22 (1) ◽  
pp. 133-156 ◽  
Author(s):  
Yu Du ◽  
Zhimin Zhang

AbstractWe study the error analysis of the weak Galerkin finite element method in [24, 38] (WG-FEM) for the Helmholtz problem with large wave number in two and three dimensions. Using a modified duality argument proposed by Zhu and Wu, we obtain the pre-asymptotic error estimates of the WG-FEM. In particular, the error estimates with explicit dependence on the wave numberkare derived. This shows that the pollution error in the brokenH1-norm is bounded byunder mesh conditionk7/2h2≤C0or (kh)2+k(kh)p+1≤C0, which coincides with the phase error of the finite element method obtained by existent dispersion analyses. Herehis the mesh size,pis the order of the approximation space andC0is a constant independent ofkandh. Furthermore, numerical tests are provided to verify the theoretical findings and to illustrate the great capability of the WG-FEM in reducing the pollution effect.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1399
Author(s):  
Jinsheng Liu ◽  
Yue Xiao ◽  
Mogeng Li ◽  
Jianjun Tao ◽  
Shengjin Xu

The intermittent distribution of localized turbulent structures is a key feature of the subcritical transitions in channel flows, which are studied in this paper with a wind channel and theoretical modeling. Entrance disturbances are introduced by small beads, and localized turbulent patches can be triggered at low Reynolds numbers (Re). High turbulence intensity represents strong ability of perturbation spread, and a maximum turbulence intensity is found for every test case as Re ≥ 950, where the turbulence fraction increases abruptly with Re. Skewness can reflect the velocity defects of localized turbulent patches and is revealed to become negative when Re is as low as about 660. It is shown that the third-order moments of the midplane streamwise velocities have minima, while the corresponding forth-order moments have maxima during the transition. These kinematic extremes and different variation scenarios of the friction coefficient during the transition are explained with an intermittent structure model, where the robust localized turbulent structure is simplified as a turbulence unit, a structure whose statistical properties are only weak functions of the Reynolds number.


2021 ◽  
Author(s):  
Neal A Crocker ◽  
Shawn X Tang ◽  
Kathreen E Thome ◽  
Jeff Lestz ◽  
Elena Belova ◽  
...  

Abstract Novel internal measurements and analysis of ion cyclotron frequency range fast-ion driven modes in DIII-D are presented. Observations, including internal density fluctuation (ñ) measurements obtained via Doppler Backscattering, are presented for modes at low harmonics of the ion cyclotron frequency localized in the edge. The measurements indicate that these waves, identified as coherent Ion Cyclotron Emission (ICE), have high wave number, _⊥ρ_fast ≳ 1, consistent with the cyclotron harmonic wave branch of the magnetoacoustic cyclotron instability (MCI), or electrostatic instability mechanisms. Measurements show extended spatial structure (at least ~ 1/6 the minor radius). These edge ICE modes undergo amplitude modulation correlated with edge localized modes (ELM) that is qualitatively consistent with expectations for ELM-induced fast-ion transport.


1967 ◽  
Vol 27 (3) ◽  
pp. 581-593 ◽  
Author(s):  
P. G. Saffman

A field of homogeneous turbulence generated at an initial instant by a distribution of random impulsive forces is considered. The statistical properties of the forces are assumed to be such that the integral moments of the cumulants of the force system all exist. The motion generated has the property that at the initial instant\[ E(\kappa) = C\kappa^2 + o(\kappa^2), \]whereE(k) is the energy spectrum function,kis the wave-number magnitude, andCis a positive number which is not in general zero. The corresponding forms of the velocity covariance spectral tensor and correlation tensor are determined. It is found that the terms in the velocity covarianceRij(r) areO(r−3) for large values of the separation magnituder.An argument based on the conservation of momentum is used to show thatCis a dynamical invariant and that the forms of the velocity covariance at large separation and the spectral tensor at small wave number are likewise invariant. For isotropic turbulence, the Loitsianski integral diverges but the integral\[ \int_0^{\infty} r^2R(r)dr = \frac{1}{2}\pi C \]exists and is invariant.


2013 ◽  
Vol 5 (04) ◽  
pp. 477-493 ◽  
Author(s):  
Wen Chen ◽  
Ji Lin ◽  
C.S. Chen

AbstractIn this paper, we investigate the method of fundamental solutions (MFS) for solving exterior Helmholtz problems with high wave-number in axisymmetric domains. Since the coefficient matrix in the linear system resulting from the MFS approximation has a block circulant structure, it can be solved by the matrix decomposition algorithm and fast Fourier transform for the fast computation of large-scale problems and meanwhile saving computer memory space. Several numerical examples are provided to demonstrate its applicability and efficacy in two and three dimensional domains.


Sign in / Sign up

Export Citation Format

Share Document