Flow and Heat Transfer Enhancement of Nanofluids in Microchannel With Blocks and Grooves

Author(s):  
Ping Li ◽  
Jianhui Chen ◽  
Huancheng Qu ◽  
Yonghui Xie ◽  
Di Zhang

A code based on the lattice-Boltzmann method was programmed. At various Reynolds numbers, simulations of the Cu/water nanofluid flow structure and heat transfer performance in a two dimensional microchannel with blocks (Re = 10–100) and grooves (Re = 50–200) were conducted, and the factors affecting the flow and heat transfer were explored. The flow and heat transfer of nanofluids with nanoparticle volume concentration of 0.5%, 1.0%, 1.5% and 2.0% were simulated, obtaining the velocity and temperature distributions to compare with the results of base fluid. Flow analysis showed that recirculation zones formed behind the blocks and in the grooves when nanofluids flowed in the microchannel, and the size of recirculation zone increased with the increase of Reynolds number and nanoparticle volume concentration. The core of the recirculation zone in the groove gradually moved to the right wall as Reynolds number increased at the same nanoparticle volume concentration, and the direction of the main flow was getting horizontal. Heat transfer results indicated that the addition of nanoparticles could promote fluid flow and energy transport, so that the thermal boundary layer thickness decreased and the heat transfer was enhanced. The heat transfer enhancement increased with the increase of Reynolds number and nanoparticle volume concentration. It was also shown that the heat transfer enhancement by increasing the Reynolds number was limited. The results could give a fundamental understanding for designing highly efficient heat exchangers.

Author(s):  
Shian Li ◽  
Gongnan Xie ◽  
Bengt Sunden

Purpose – The employment of continuous ribs in a passage involves a noticeable pressure drop penalty, while other studies have shown that truncated ribs may provide a potential to reduce the pressure drop while keeping a significant heat transfer enhancement. The purpose of this paper is to perform computer-aided simulations of turbulent flow and heat transfer of a rectangular cooling passage with continuous or truncated 45-deg V-shaped ribs on opposite walls. Design/methodology/approach – Computational fluid dynamics technique is used to study the fluid flow and heat transfer characteristics in a three-dimensional rectangular passage with continuous and truncated V-shaped ribs. Findings – The inlet Reynolds number, based on the hydraulic diameter, is ranged from 12,000 to 60,000 and a low-Re k-e model is selected for the turbulent computations. The local flow structure and heat transfer in the internal cooling passages are presented and the thermal performances of the ribbed passages are compared. It is found that the passage with truncated V-shaped ribs on opposite walls provides nearly equivalent heat transfer enhancement with a lower (about 17 percent at high Reynolds number of 60,000) pressure loss compared to a passage with continuous V-shaped ribs or continuous transversal ribs. Research limitations/implications – The fluid is incompressible with constant thermophysical properties and the flow is steady. The passage is stationary. Practical implications – New and additional data will be helpful in the design of ribbed passages to achieve a good thermal performance. Originality/value – The results imply that truncated V-shaped ribs are very effective in improving the thermal performance and thus are suggested to be applied in gas turbine blade internal cooling, especially at high velocity or Reynolds number.


2021 ◽  
Vol 13 (6) ◽  
pp. 3023
Author(s):  
Basma Souayeh ◽  
Suvanjan Bhattacharyya ◽  
Najib Hdhiri ◽  
Mir Waqas Alam

A circular tube fitted with novel corrugated spring tape inserts has been investigated. Air was used as the working fluid. A thorough literature review has been done and this geometry has not been studied previously, neither experimentally nor theoretically. A novel experimental investigation of this enhanced geometry can, therefore, be treated as a new substantial contribution in the open literature. Three different spring ratio and depth ratio has been used in this study. Increase in thermal energy transport coefficient is noticed with increase in depth ratio. Corrugated spring tape shows promising results towards heat transfer enhancement. This geometry performs significantly better (60% to 75% increase in heat duty at constant pumping power and 20% to 31% reduction in pumping power at constant heat duty) than simple spring tape. This paper also presented a statistical analysis of the heat transfer and fluid flow by developing an artificial neural network (ANN)-based machine learning (ML) model. The model is evaluated to have an accuracy of 98.00% on unknown test data. These models will help the researchers working in heat transfer enhancement-based experiments to understand and predict the output. As a result, the time and cost of the experiments will reduce. The results of this investigation can be used in designing heat exchangers.


Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n

Gas turbine blade tips encounter large heat load as they are exposed to the high temperature gas. A common way to cool the blade and its tip is to design serpentine passages with 180-deg turns under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase the blade tip life time. This paper presents numerical predictions of turbulent fluid flow and heat transfer through two-pass channels with and without guide vanes placed in the turn regions using RANS turbulence modeling. The effects of adding guide vanes on the tip-wall heat transfer enhancement and the channel pressure loss were analyzed. The guide vanes have a height identical to that of the channel. The inlet Reynolds numbers are ranging from 100,000 to 600,000. The detailed three-dimensional fluid flow and heat transfer over the tip-walls are presented. The overall performances of several two-pass channels are also evaluated and compared. It is found that the tip heat transfer coefficients of the channels with guide vanes are 10∼60% higher than that of a channel without guide vanes, while the pressure loss might be reduced when the guide vanes are properly designed and located, otherwise the pressure loss is expected to be increased severely. It is suggested that the usage of proper guide vanes is a suitable way to augment the blade tip heat transfer and improve the flow structure, but is not the most effective way compared to the augmentation by surface modifications imposed on the tip-wall directly.


Author(s):  
Bolaji O. Olayiwola ◽  
Gerhard Schaldach ◽  
Peter Walzel

Heat transfer enhancement by pulsating flow in a zigzag channel has been numerically studied using a commercial CFD software for the ranges of laminar flow 0 < Re < 550. The influence of inclination angle α of the zigzag channel and oscillation parameters is investigated. The amplitude of the pulsatile flow was varied between 0.5 mm and 4 mm. The frequency f ranges between 0.5 Hz and 5.5 Hz. For steady flow, fluid mixing is promoted by self induced fluctuation due to the instability of the flow. The Reynolds number Re for the occurrence of significant eddy decreases with increase of the inclination angle of the channel. Superposition of oscillation additionally promotes further fluid mixing by the propagation of different scales of vortices. In comparison to straight channels, significant heat transfer in the laminar regime is possible using a zigzag channel with inclination angle greater than 15°. Further intensification of the heat transfer is possible with superposition of oscillation on the main flow through the channel. However, the heat transfer enhancement due to imposed oscillation is found to increase with decreasing Reynolds number. The effect of the imposed oscillation yields heat transfer enhancement E of up to 1.41 when compared with steady flow in zigzag channel at Reynolds number Re = 107, frequency f = 2.17 Hz and oscillation amplitude A = 1mm using a zigzag channel with an inclination angle α = 15°. Further heat transfer enhancement E of up to 1.80 at the same flow and oscillation conditions is possible with a zigzag channel having inclination angle α = 45°. The influence of oscillation frequency on the heat transfer enhancement E becomes significant as soon as the Womersley number W > 41.32. The effect of superposition of oscillation is not significant using a zigzag channel with inclination angle α = 60°. When the oscillation amplitude is increased up to 4 mm at Reynolds number Re = 107, frequency f = 2.17 Hz and inclination angle α = 45°, the heat transfer enhancement E of about 3.3 is obtained.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
A. M. I. Mohamed ◽  
R. Hoettiba ◽  
A. M. Saif

Heat transfer enhancement using corrugated ribbed passages is one of the common enhancement techniques inside heat exchangers. The present study investigated numerically the effect of the corrugation rib angle of attack on the fluid flow and heat transfer characteristics inside the corrugated ribbed passage. The commercial computational fluid dynamics code PHOENICS 2006 was used to perform the numerical analysis by solving the Navier–Stokes and energy equations. The experimental part of this study was used only to validate the numerical model, and a good agreement between the experimental results and the model was obtained. The flow field characteristics and heat transfer enhancement were numerically investigated for different corrugated rib angles of attack as follows: 90 deg, 105 deg, 120 deg, 135 deg, and 150 deg. The corrugation rib angle of attack has a great effect on the reversed flow zone, the flow reattachments, and the enhancement of the heat transfer coefficient through the duct. The recommended rib angle of attack, which gives the optimum thermohydraulic performance, is found to be between 135 deg and 150 deg. The value of the maximum thermohydraulic performance is about 3.6 for the 150 deg rib angle of attack at a Reynolds number equal to 10,000.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Kishor S. Rambhad ◽  
Vednath P. Kalbande ◽  
Manoj A. Kumbhalkar ◽  
Vivek W. Khond ◽  
Rahul A. Jibhakate

Abstract The performance of heat transfer enhancement (HTE) using modified inserts (MIs) as a vortex generator in pipe flow and fluid flow analysis using computational fluid dynamics (CFD) are evaluated in this article. The MIs are fastened to the central rod, and the circular sections of the MIs touched the circular wall of the test pipe. Heat transfer and fluid flow analyses are carried out for the various pitch to diameter ratios (P/D) and angles of the MIs. P/D ratios of 3, 4 and 6 and MIs angles of 15°, 30°, 45°, 60° and 90° are considered for experimental analysis. CFD analysis is carried out for P/D ratios of 3, 4 and 6 and MIs angles of 30°, 45° and 90°. Nusselt number (Nu/Nus) and friction factor (f/fs) ratios are evaluated using the same Reynolds number between 8000 and 17,000 in the experimental study. The MIs encourage the wall and core fluid to be combined thus helps in HTE. It is found that, as the P/D ratio increases, the Nu/Nus and f/fs decrease. If the distance between the MIs increases, the mixing of fluid weakens. With decreasing the P/D ratio, Nu/Nus increases. Increased fluid mixing leads to a higher coefficient of heat transfer and higher values of pressure drop. A P/D ratio of 4 and MIs angle of 45° results in greater heat interaction than others. Finally, recommendations for the best P/D ratio and angles of MIs are made for improved HTE on fluid flow through a circular pipe. Article Highlights Modified inserts (MIs) are used inside the test pipe to check the heat transfer enhancement at various angles. Also, compared the performance with and without MIs. Fluid flow analysis is checked by CFD (Fluent) in Ansys software. Fluid flow patterns for various MIs angles and P/D ratios are compared.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Weihong Zhang ◽  
Giulio Lorenzini ◽  
Cesare Biserni

Repeated ribs are often employed in the midsection of internal cooling passages of turbine blades to augment the heat transfer by air flowing through the internal ribbed passages. Though the research of flow structure and augmented heat transfer inside various ribbed passages has been well conducted, previous works mostly paid much attention to the influence of rib topology (height-to-pitch, blockage ratio, skew angle, rib shape). The possible problem involved in the usage of ribs (especially with larger blockage ratios) is pressure loss penalty. Thus, in this case, the design of truncated ribs whose length is less than the passage width might fit the specific cooling requirements when pressure loss is critically considered. A numerical study of truncated ribs on turbulent flow and heat transfer inside a passage of a gas turbine blade is performed when the inlet Reynolds number ranges from 8000 to 24,000. Different truncation ratio (truncated-length to passage-width) rib geometries are designed and then the effect of truncation ratio on the pressure drop and heat transfer enhancement is observed under the condition of constant total length. The overall performance characteristics of various truncated rib passages are also compared. It is found that the heated face with a rib that is truncated 12% in length in the center (case A) has the highest heat transfer coefficient, while the heated face with a rib that is truncated 4% at three locations over its length, in the center and two sides (case D), has a reduced pressure loss compared with passages of other designs and provides the lowest friction factors. Although case A shows larger heat transfer augmentation, case D can be promisingly used to augment side-wall heat transfer when the pressure loss is considered and the Reynolds number is relatively large.


Sign in / Sign up

Export Citation Format

Share Document