Behavior of Janus Particles at Liquid Interfaces

Author(s):  
Hossein Rezvantalab ◽  
Shahab Shojaei-Zadeh

We study the capillary-induced interactions and configuration of spherical and non-spherical Janus particles adsorbed at flat liquid-fluid interfaces. For Janus spheres, the equilibrium orientation results in each hemisphere being exposed to its more favored fluid. However, experimental observations suggest that some of these particles may take a tilted orientation at the interface, giving rise to a deformed interface. On the other hand, Janus ellipsoids with a large aspect ratio or a small difference in the wettability of the two regions tend to tilt even at equilibrium. The overlap of deformed menisci results in energetic interactions between neighboring particles. We numerically calculate the interface shape around the particles by minimizing the total surface energy of the system comprising of the interface and particle-fluid regions. We quantify these interactions through evaluation of capillary energy variation as a function of the orientation and separation distance between the particles. We find that Janus spheres with similar orientations undergo a relative realignment in the interface plane in order to minimize the capillary energy. In case of ellipsoidal particles, the particles assemble in a preferred side-by-side configuration. We evaluate the role of anisotropy and degree of amphiphilicity on the inter-particle force and the capillary torque. The results can be used to predict the migration and oriented assembly of Janus particles with various geometrical and surface properties at liquid-fluid interfaces.

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 374
Author(s):  
Elton L. Correia ◽  
Nick Brown ◽  
Sepideh Razavi

The use of the Janus motif in colloidal particles, i.e., anisotropic surface properties on opposite faces, has gained significant attention in the bottom-up assembly of novel functional structures, design of active nanomotors, biological sensing and imaging, and polymer blend compatibilization. This review is focused on the behavior of Janus particles in interfacial systems, such as particle-stabilized (i.e., Pickering) emulsions and foams, where stabilization is achieved through the binding of particles to fluid interfaces. In many such applications, the interface could be subjected to deformations, producing compression and shear stresses. Besides the physicochemical properties of the particle, their behavior under flow will also impact the performance of the resulting system. This review article provides a synopsis of interfacial stability and rheology in particle-laden interfaces to highlight the role of the Janus motif, and how particle anisotropy affects interfacial mechanics.


1995 ◽  
Vol 31 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Graham F. White

Many organic pollutants, especially synthetic surfactants, adsorb onto solid surfaces in natural and engineered aquatic environments. Biofilm bacteria on such surfaces make major contributions to microbial heterotrophic activity and biodegradation of organic pollutants. This paper reviews evidence for multiple interactions between surfactants, biodegradative bacteria, and sediment-liquid interfaces. Biodegradable surfactants e.g. SDS, added to a river-water microcosm were rapidly adsorb to sediment surface and stimulated the indigenous bacteria to attach to the sediment particles. Recalcitrant surfactants and non-surfactant organic nutrients did not stimulate attachment Attachment of bacteria was maximal when biodegradation was fastest, and was reversed when biodegradation was complete. Dodecanol, the primary product of SDS-biodegradation, markedly stimulated attachment. When SDS was added to suspensions containing sediment and either known degraders or known non-degraders, only the degraders became attached, and attachment accelerated surfactant biodegradation to dodecanol. These cyclical cooperative interactions have implications for the design of biodegradability-tests, the impact of surfactant adjuvants on biodegradability of herbicides/pesticides formulated with surfactants, and the role of surfactants used to accelerate bioremediation of hydrocarbon-polluted soils.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meneka Banik ◽  
Shaili Sett ◽  
Chirodeep Bakli ◽  
Arup Kumar Raychaudhuri ◽  
Suman Chakraborty ◽  
...  

AbstractSelf-assembly of Janus particles with spatial inhomogeneous properties is of fundamental importance in diverse areas of sciences and has been extensively observed as a favorably functionalized fluidic interface or in a dilute solution. Interestingly, the unique and non-trivial role of surface wettability on oriented self-assembly of Janus particles has remained largely unexplored. Here, the exclusive role of substrate wettability in directing the orientation of amphiphilic metal-polymer Bifacial spherical Janus particles, obtained by topo-selective metal deposition on colloidal Polymestyere (PS) particles, is explored by drop casting a dilute dispersion of the Janus colloids. While all particles orient with their polymeric (hydrophobic) and metallic (hydrophilic) sides facing upwards on hydrophilic and hydrophobic substrates respectively, they exhibit random orientation on a neutral substrate. The substrate wettability guided orientation of the Janus particles is captured using molecular dynamic simulation, which highlights that the arrangement of water molecules and their local densities near the substrate guide the specific orientation. Finally, it is shown that by spin coating it becomes possible to create a hexagonal close-packed array of the Janus colloids with specific orientation on differential wettability substrates. The results reported here open up new possibilities of substrate-wettability driven functional coatings of Janus particles, which has hitherto remained unexplored.


2016 ◽  
Vol 233 ◽  
pp. 240-254 ◽  
Author(s):  
Miguel Angel Fernandez-Rodriguez ◽  
Miguel Angel Rodriguez-Valverde ◽  
Miguel Angel Cabrerizo-Vilchez ◽  
Roque Hidalgo-Alvarez

Soft Matter ◽  
2013 ◽  
Vol 9 (13) ◽  
pp. 3640 ◽  
Author(s):  
Hossein Rezvantalab ◽  
Shahab Shojaei-Zadeh

Soft Matter ◽  
2018 ◽  
Vol 14 (23) ◽  
pp. 4661-4665 ◽  
Author(s):  
Wenjie Fei ◽  
Michelle M. Driscoll ◽  
Paul M. Chaikin ◽  
Kyle J. M. Bishop

Static homogeneous fields drive motions of magnetic particles along curved liquid interfaces.


Surfactants ◽  
2019 ◽  
pp. 130-155
Author(s):  
Bob Aveyard

The physical properties of solid/liquid interfaces are more diverse than those of liquid/fluid interfaces, and consequently the interactions giving rise to adsorption of surfactant or polymeric surfactant are more varied. Solid surfaces can be either hydrophilic or hydrophobic, the former being water-wetted and containing polar or ionogenic sites. Electrical charge at the solid surface is neutralized by ions in the inner and outer Helmholtz planes and in the diffuse part of the electrical double layer. Surface charge has a strong influence on adsorption of ionic surfactants. Standard free energies of surfactant adsorption are obtained by use of an appropriate adsorption isotherm such as the Stern–Langmuir equation. Micellar aggregates of various shapes and sizes can also form at solid/liquid interfaces.


2020 ◽  
Vol 16 (11) ◽  
pp. 7135-7147
Author(s):  
Jason Klebes ◽  
Sophie Finnigan ◽  
David J. Bray ◽  
Richard L. Anderson ◽  
William C. Swope ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document