scholarly journals Three-particle quantization condition in a finite volume: 1. The role of the three-particle force

2017 ◽  
Vol 2017 (9) ◽  
Author(s):  
Hans-Werner Hammer ◽  
Jin-Yi Pang ◽  
Akaki Rusetsky
2018 ◽  
Vol 175 ◽  
pp. 11006
Author(s):  
Akaki Rusetsky ◽  
Hans-Werner Hammer ◽  
Jin-Yi Pang

The three-particle quantization condition is derived, using the particle-dimer picture in the non-relativistic effective field theory. The procedure for the extraction of various observables in the three-particle sector (the particle-dimer scattering amplitudes, breakup amplitudes, etc.) from the finite-volume lattice spectrum is discussed in detail. As an illustration of the general formalism, the expression for the finite-volume energy shift of the three-body bound-state in the unitary limit is re-derived. The role of the threebody force, which is essential for the renormalization, is highlighted, and the extension of the result beyond the unitary limit is studied. Comparison with other approaches, known in the literature, is carried out.


2021 ◽  
pp. 1-9
Author(s):  
M. Hosseini-Tabatabaei ◽  
S.A. Alavi ◽  
V. Dehghani

Using the semiclassical WKB method and considering the WKB quantization condition, the alpha decay half-lives of 420 alpha emitters were calculated with eight forms of the proximity and Woods–Saxon type potentials. The effect of quantization condition on the nuclear potential, effective potential, assault frequency, tunneling probability, alpha decay half-life, and root mean square deviation between theory and the experiment were investigated. Significant differences between calculated half-lives with and without inclusion of the quantization condition were observed specially for proximity potentials. By including the quantization, the Woods–Saxon potential was found as the best potential for even–even, even–odd, odd–even, odd–odd, and all alpha emitters. The quantization condition normalized the nuclear potentials. Therefore, by considering this condition, the thirteen forms of the prox77 potential with different sets of the surface energy and surface asymmetry constants gave the same results. This result was justified with two sets of parameters.


2019 ◽  
Vol 69 (1) ◽  
pp. 65-107 ◽  
Author(s):  
Maxwell T. Hansen ◽  
Stephen R. Sharpe

Most strong-interaction resonances have decay channels involving three or more particles, including many of the recently discovered X, Y, and Z resonances. In order to study such resonances from first principles using lattice QCD, one must understand finite-volume effects for three particles in the cubic box used in calculations. We review efforts to develop a three-particle quantization condition that relates finite-volume energies to infinite-volume scattering amplitudes. We describe in detail the three approaches that have been followed, and present new results on the relationship between the corresponding results. We show examples of the numerical implementation of all three approaches and point out the important issues that remain to be resolved.


Author(s):  
Hossein Rezvantalab ◽  
Shahab Shojaei-Zadeh

We study the capillary-induced interactions and configuration of spherical and non-spherical Janus particles adsorbed at flat liquid-fluid interfaces. For Janus spheres, the equilibrium orientation results in each hemisphere being exposed to its more favored fluid. However, experimental observations suggest that some of these particles may take a tilted orientation at the interface, giving rise to a deformed interface. On the other hand, Janus ellipsoids with a large aspect ratio or a small difference in the wettability of the two regions tend to tilt even at equilibrium. The overlap of deformed menisci results in energetic interactions between neighboring particles. We numerically calculate the interface shape around the particles by minimizing the total surface energy of the system comprising of the interface and particle-fluid regions. We quantify these interactions through evaluation of capillary energy variation as a function of the orientation and separation distance between the particles. We find that Janus spheres with similar orientations undergo a relative realignment in the interface plane in order to minimize the capillary energy. In case of ellipsoidal particles, the particles assemble in a preferred side-by-side configuration. We evaluate the role of anisotropy and degree of amphiphilicity on the inter-particle force and the capillary torque. The results can be used to predict the migration and oriented assembly of Janus particles with various geometrical and surface properties at liquid-fluid interfaces.


2021 ◽  
Author(s):  
C. Fernandes ◽  
S. A. Faroughi ◽  
R. Ribeiro ◽  
A. Isabel ◽  
G. H. McKinley

Abstract Accurately resolving the coupled momentum transfer between the liquid and solid phases of complex fluids is a fundamental problem in multiphase transport processes, such as hydraulic fracture operations. Specifically we need to characterize the dependence of the normalized average fluid-particle force < F > on the volume fraction of the dispersed solid phase and on the rheology of the complex fluid matrix, parameterized through the Weissenberg number Wi measuring the relative magnitude of elastic to viscous stresses in the fluid. Here we use direct numerical simulations (DNS) to study the creeping flow (Re << 1) of viscoelastic fluids through static random arrays of monodisperse spherical particles using a finite volume Navier-Stokes/Cauchy momentum solver. The numerical study consists of N = 150 different systems, in which the normalized average fluid-particle force <F> is obtained as a function of the volume fraction φ (0 < φ ≤ 0.2) of the dispersed solid phase and the Weissenberg number Wi (0 ≤ Wi ≤ 4). From these predictions a closure law < F >( Wi,φ ) for the drag force is derived for the quasi-linear Oldroyd-B viscoelastic fluid model (with fixed retardation ratio β = 0.5) which is, on average, within 5.7% of the DNS results. Additionally, a flow solver able to couple Eulerian and Lagrangian phases (in which the particulate phase is modeled by the discrete particle method (DPM)) is developed, which incorporates the viscoelastic nature of the continuum phase and the closed-form drag law. Two case studies were simulated using this solver, in order to assess the accuracy and robustness of the newly-developed approach for handling particle-laden viscoelastic flow configurations with O (10 5 − 10 6 ) rigid spheres that are representative of hydraulic fracture operations. Three-dimensional settling processes in a Newtonian fluid and in a quasi-linear Oldroyd-B viscoelastic fluid are both investigated using a rectangular channel and an annular pipe domain. Good agreement is obtained for the particle distribution measured in a Newtonian fluid, when comparing numerical results with experimental data. For the cases in which the continuous fluid phase is viscoelastic we compute the evolution in the velocity fields and predicted particle distributions are presented at different elasticity numbers 0 ≤ El ≤ 30 (where El = Wi/Re ) and for different suspension particle volume fractions.


2020 ◽  
Vol 241 ◽  
pp. 02005
Author(s):  
Jin-Yi Pang

Lattice QCD calculations provide an ab initio access to hadronic process. These calculations are usu ally performed in a small cubic volume with periodic boundary conditions. The infinite volume extrapolations for three-body systems are indispensable to understand many systems of high current interest. We derive the three-body quantization condition in a finite volume using an effective field theory in the particle-dimer picture. Our work shows a powerful and transparent method to read off three-body physical observables from lattice simulations. In this paper, we review the formalism, quantization condition, spectrum analysis and energy shifts calculation both for 3-body bound states and scattering states.


2018 ◽  
Vol 97 (11) ◽  
Author(s):  
M. Döring ◽  
H.-W. Hammer ◽  
M. Mai ◽  
J.-Y. Pang ◽  
A. Rusetsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document