Optimization of Looped Airfoil Wind Turbine (LAWT™) Design Parameters for Maximum Power Generation

Author(s):  
Binhe Song ◽  
Subhodeep Banerjee ◽  
George Syrovy ◽  
Ramesh K. Agarwal

The looped airfoil wind turbine (LAWT™) is a patented new technology by EverLift Wind Tecnology, Inc. for generating power from wind. It takes advantage of the superior lift force of a linearly traveling wing compared to the rotating blades in conventional wind turbine configurations. Compared to horizontal and vertical axis wind turbines, the LAWT™ can be manufactured with minimal cost because it does not require complex gear systems and its blades have a constant profile along their length [1]. These considerations make the LAWT™ economically attractive for small-scale and decentralized power generation in rural areas. Each LAWT™ is estimated to generate power in the range of 10 kW to 1 MW. Due to various advantages, it is meaningful to determine the maximum power generation of a LAWT™ by optimizing the structural layout. In this study, CFD simulations were conducted using ANSYS Fluent to determine the total lift and drag coefficient for a cascade of airfoils. The k-kl-ω turbulence model was used to account for flow in the laminar-turbulent transition region. Given the lift and drag coefficients and the kinematics of the system, an analytical formula for the power generation of the LAWT™ was developed. General formulas were obtained for the average lift and drag coefficients so that the total power could be predicted for any number of airfoils in LAWT™. The spacing between airfoils was identified as the key design parameter that affected the power generation of the LAWT™. The results show that a marked increase in total power can be achieved if the optimum spacing between the airfoils is used.

Author(s):  
Subhodeep Banerjee ◽  
Binhe Song ◽  
George Syrovy ◽  
Ramesh K. Agarwal

The looped airfoil wind turbine (LAWT™) is a patented new technology by EverLift Wind Tecnology, Inc. for generating power from wind. It takes advantage of the superior lift force of a linearly traveling wing compared to the rotating blades in conventional wind turbine configurations. Compared to horizontal and vertical axis wind turbines, the LAWT™ can be manufactured with minimal cost because it does not require complex gear systems and its blades have a constant profile along their length [1]. These considerations make the LAWT™ economically attractive for small-scale and decentralized power generation in rural areas. Each LAWT™ is estimated to generate power in the range of 10 kW to 1 MW. Due to various advantages, it is meaningful to determine the maximum power generation of a LAWT™ by optimizing the structural layout. In this study, CFD simulations were conducted using ANSYS Fluent to determine the total lift and drag coefficient for a cascade of airfoils. The k-kl-ω turbulence model was used to account for flow in the laminar-turbulent transition region. Given the lift and drag coefficients and the kinematics of the system, an analytical formula for the power generation of the LAWT™ was developed. General formulas were obtained for the average lift and drag coefficients so that the total power could be predicted for any number of airfoils in LAWT™. The spacing between airfoils was identified as the key design parameter that affected the power generation of the LAWT™. The results show that a marked increase in total power can be achieved if the optimum spacing between the airfoils is used.


2020 ◽  
Author(s):  
Bala Maheswaran ◽  
Alya Abd Aziz ◽  
Evan Alexander ◽  
Laura Brigandi ◽  
Cole Branagan

Author(s):  
Emre Hasan Dursun ◽  
Ahmet Afsin Kulaksiz

AbstractWhile the use of renewable energy systems in electric power generation is increasing more and more, wind energy conversion systems (WECS) receive considerable attention among these. Thanks to the ability of power generation in all wind speed range by controlling the rotor speed, Variable Speed WECSs are more preferred than fixed speed WECSs. When considering small-scale applications in variable speed WECS, Permanent Magnet Synchronous Generator (PMSG) based WECS structures are focus of the interest due to their advantages such as high efficiency and low maintenance costs. The generator must be operated at an optimum speed to obtain maximum power from the WECS. Moreover, different Maximum Power Point Tracking (MPPT) methods can be used to control and determine optimal operating speed. In this paper, WECS configuration consists of PMSG, uncontrolled rectifier, DC link capacitor, DC-DC boost converter and DC-Bus. Capturing the maximum power from WECS and supplying the DC-Bus is performed via tip speed ratio and PI control (TSR-PI) based MPPT method. Moreover, two wind speed profiles having constant and instant changes are created to test the performance of the proposed method. For comparison purposes, perturbation & observation (P&O) based MPPT method is also carried out in here. According to obtained results from this study performed in Matlab/Simulink environment, it is verified that TSR-PI based MPPT method ensures higher power and efficiency for these wind speed profiles by means of a more successful generator speed tracking.


2019 ◽  
Vol 32 ◽  
pp. 983-990 ◽  
Author(s):  
Karim Oukassou ◽  
Sanaa El Mouhsine ◽  
Abdellah El Hajjaji ◽  
Bousselham Kharbouch

Author(s):  
Carlos Xisto ◽  
José Páscoa ◽  
Michele Trancossi

In the paper, four key design parameters with a strong influence on the performance of a small-scale high solidity variable pitch VAWT (Vertical Axis Wind Turbine), operating at low tip-speed-ratio (TSR) are addressed. To this aim a numerical approach, based on a finite-volume discretization of two-dimensional Unsteady RANS equations on a multiple sliding mesh, is proposed and validated against experimental data. The self-pitch VAWT design is based on a straight blade Darrieus wind turbine with blades that are allowed to pitch around a feathering axis, which is also parallel to the axis of rotation. The pitch angle amplitude and periodic variation are dynamically controlled by a four-bar-linkage system. We only consider the efficiency at low and intermediate TSR, therefore the pitch amplitude is chosen to be a sinusoidal function with a considerable amplitude. The results of this parametric analysis will contribute to define the guidelines for building a full size prototype of a small scale turbine of increased efficiency.


Author(s):  
Quang-Vi Ngo ◽  
Chai Yi ◽  
Trong-Thang Nguyen

This paper presents the research on small-scale wind turbine systems based on the Maximum Power Point Tracking (MPPT) algorithm. Then propose a new structure of a small-scale wind turbine system to simplify the structure of the system, making the system highly practical. This paper also presented an MPPT-Fuzzy controller design and proposed a control system using the wind speed sensor for small-scale wind turbines. Systems are simulated using Matlab/Simulink software to evaluate the feasibility of the proposed controller. As a result, the system with the MPPT-Fuzzy controller has much better quality than the traditional control system.


2009 ◽  
Vol 3 (2) ◽  
pp. 43-51 ◽  
Author(s):  
Altab Hossain ◽  
Ataur Rahman ◽  
Mozasser Rahman ◽  
SK Hasan ◽  
Jakir Hossen

Author(s):  
Avinash Renuke ◽  
Alberto Vannoni ◽  
Matteo Pascenti ◽  
Alberto Traverso

Abstract Interest in small-scale turbines is growing mainly for small-scale power generation and energy harvesting. Conventional bladed turbines impose manufacturing limitations and higher cost, which hinder their implementation at small scale. This paper focuses on experimental and numerical performance investigation of Tesla type turbines for micro power generation. A flexible test rig for Tesla turbine fed with air as working fluid has been developed, of about 100 W net mechanical power, with modular design of two convergent-divergent nozzles to get subsonic as well as supersonic flow at the exit. Seals are incorporated at the end disks to minimize leakage flow. Extensive experiments are done by varying design parameters such as disk thickness, gap between disks, radius ratio, and outlet area of exhaust with speeds ranging from 10,000 rpm to 40,000 rpm. A quasi-one-dimensional (1D) model of the whole setup is created and tuned with experimental data to capture the overall performance. Major losses, ventilation losses at end disks, and nozzle and exhaust losses are evaluated experimentally and numerically. Effect of design parameters on the performance of Tesla turbines is discussed.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Rahim Hassanzadeh ◽  
Milad Mohammadnejad ◽  
Sajad Mostafavi

Abstract Savonius turbines are one of the old and cost-effective turbines which extract the wind energy by the drag force. Nowadays, they use in urban areas to generate electricity due to their simple structure, ease of maintenance, and acceptable power output under a low wind speed. However, their efficiency is low and the improvement of their performance is necessary to increase the total power output. This paper compares four various blade profiles in a two-blade conventional Savonius wind turbine. The ratios of blade diameter to the blade depth of s/d = 0.3, 0.5, 0.7, and 1 are tested under different free-wind speeds of 3, 5, and 7 m/s and tip speed ratios (TSRs) in the range from 0.2 to 1.2. It is found that the profile of blades in a Savonius rotor plays a considerable role in power characteristics. Also, regardless of blades profile and free-wind speed, the maximum power coefficient develops in TSR = 0.8. In addition, increasing the free-wind speed enhances the rotor performance of all cases under consideration. Finally, it is revealed that the rotor with s/d = 0.5 provides maximum power coefficients in all free-wind speeds and TSR values among the rotors under consideration, whereas the rotor with s/d = 1 is the worth cases.


Sign in / Sign up

Export Citation Format

Share Document