Research on Flow Field of a Fixed Duct in a Rotary Energy Recovery Device

Author(s):  
K. Liu ◽  
J. Q. Deng ◽  
B. Yang

An experimental study was carried out to investigate flow structures in the duct of a rotary energy recovery device (RERD). In order to visualize the flow field, a new type structure of the RERD was proposed in this experiment, which had a fixed duct and two rotating ports. A two-dimensional particle image velocimetry (PIV) measurement was performed to visualize the flow structure in the duct of the RERD. The turbulent flow structure in the duct was analyzed. The instantaneous vorticity contours and associated vectors showed the generation of vorticities in the duct. Moreover, the formation of the small-scale-vortex would significantly increase the flow instability and the fluid mixing rate. These results may be beneficial to researchers in better understanding the flow dynamic in the duct of a RERD and optimize the operating conditions and structural parameters of it.

Author(s):  
G. Persico ◽  
P. Gaetani ◽  
C. Osnaghi

An extensive experimental analysis on the subject of the unsteady periodic flow in a highly subsonic HP turbine stage has been carried out at the Laboratorio di Fluidodinamica delle Macchine (LFM) of the Politecnico di Milano (Italy). In this paper the blade row interaction is progressively enforced by increasing the stator and rotor blade loading and by reducing the stator-rotor axial gap from 100% (very large to smooth the rotor inlet unsteadiness) to 35% (design configuration) of the stator axial chord. The time-averaged three-dimensional flow field in the stator-rotor gap was investigated by means of a conventional five-hole probe for the nominal (0°) and an highly positive (+22°) stator incidences. The evolution of the viscous flow structures downstream of the stator is presented to characterize the rotor incoming flow. The blade row interaction was evaluated on the basis of unsteady aerodynamic measurements at the rotor exit, performed with a fast-response aerodynamic pressure probe. Results show a strong dependence of the time-averaged and phase-resolved flow field and of the stage performance on the stator incidence. The structure of the vortex-blade interaction changes significantly as the magnitude of the rotor inlet vortices increases, and very different residual traces of the stator secondary flows are found downstream of the rotor. On the contrary, the increase of rotor loading enhances the unsteadiness in the rotor secondary flows but has a little effect on the vortex-vortex interaction. For the large axial gap, a reduction of stator-related effects at the rotor exit is encountered when the stator incidence is increased as a result of the different mixing rate within the cascade gap.


2009 ◽  
Vol 630 ◽  
pp. 225-265 ◽  
Author(s):  
ISAAC W. EKOTO ◽  
RODNEY D. W. BOWERSOX ◽  
THOMAS BEUTNER ◽  
LARRY GOSS

The response of the mean and turbulent flow structure of a supersonic high-Reynolds-number turbulent boundary layer flow subjected to local and global mechanical distortions was experimentally examined. Local disturbances were introduced via small-scale wall patterns, and global distortions were induced through streamline curvature-driven pressure gradients. Local surface topologies included k-type diamond and d-type square elements; a smooth wall was examined for comparison purposes. Three global distortions were studied with each of the three surface topologies. Measurements included planar contours of the mean and fluctuating velocity via particle image velocimetry, Pitot pressure profiles, pressure sensitive paint and Schlieren photography. The velocity data were acquired with sufficient resolution to characterize the mean and turbulent flow structure and to examine interactions between the local surface roughness distortions and the imposed pressure gradients on the turbulence production. A strong response to both the local and global distortions was observed with the diamond elements, where the effect of the elements extended into the outer regions of the boundary layer. It was shown that the primary cause for the observed response was the result of local shock and expansion waves modifying the turbulence structure and production. By contrast, the square elements showed a less pronounced response to local flow distortions as the waves were significantly weaker. However, the frictional losses were higher for the blunter square roughness elements. Detailed quantitative characterizations of the turbulence flow structure and the associated production mechanisms are described herein. These experiments demonstrate fundamental differences between supersonic and subsonic rough-wall flows, and the new understanding of the underlying mechanisms provides a scientific basis to systematically modify the mean and turbulence flow structure all the way across supersonic boundary layers.


Author(s):  
Fengnian Zhao ◽  
Penghui Ge ◽  
Hanyang Zhuang ◽  
David L. S. Hung

In-cylinder air flow structure makes significant impacts on fuel spray dispersion, fuel mixture formation, and flame propagation in spark ignition direct injection (SIDI) engines. While flow vortices can be observed during the early stage of intake stroke, it is very difficult to clearly identify their transient characteristics because these vortices are of multiple length scales with very different swirl motion strength. In this study, a high-speed time-resolved 2D particle image velocimetry (PIV) is applied to record the flow structure of in-cylinder flow field along a swirl plane at 30 mm below the injector tip. First, a discretized method using flow field velocity vectors is presented to identify the location, strength, and rotating direction of vortices at different crank angles. The transients of vortex formation and dissipation processes are revealed by tracing the location and motion of the vortex center during the intake and compression strokes. In addition, an analysis method known as the wind-rose diagram, which is implemented for meteorological application, has been adopted to show the velocity direction distributions of 100 consecutive cycles. Results show that there exists more than one vortex center during early intake stroke and their fluctuations between each cycle can be clearly visualized. In summary, this approach provides an effective way to identify the vortex structure and to track the motion of vortex center for both large-scale and small-scale vortices.


Author(s):  
Khaled J. Hammad ◽  
Ivana M. Milanovic

Particle Image Velocimetry (PIV) was used to investigate the turbulent flow structure inside a jet-stirred cylindrical vessel. The submerged jet issued vertically downward from a long pipe ensuring fully developed turbulent flow conditions at the outlet. The Reynolds number based on jet mean exit velocity was 15,000. The effect of symmetric and asymmetric nozzle placement within the vessel on the resulting flow patterns was also studied. The measured turbulent velocity fields are presented using Reynolds decomposition into mean and fluctuating components, which, for the selected flow configuration, inflow and boundary conditions, allow for straightforward assessment of turbulence models and numerical schemes. The flow field was subdivided into three regions: the jet, the jet-wall interaction and bulk of vessel. Proper Orthogonal Decomposition (POD) analysis was applied to identify the most energetic coherent structures of the turbulent flow field in the bulk of tank region. The swirling strength vortex identification technique was used to detect the existence and strength of vortical structures in the jet region.


Author(s):  
Yanhui Wu ◽  
Junfeng Wu ◽  
Haoguang Zhang ◽  
Wuli Chu

Systematical casing pressure measurements were undertaken to supplement instantaneous experiment data to available database of a high-speed small-scale compressor rotor, which was crucial for understanding the flow mechanism of short-length scale stall inception. At the same time, improved full-annulus simulations were conducted to assist in interpretation of experimental observations. In Part I of current investigation, FFT (fast Fourier transformation) and STFT (short time Fourier transformation) analyses of instantaneous casing pressure signals were conducted to conclude flow characteristics near casing at stable operating conditions, and reasonable explanation of experimental observations was given in combination with the current and previous numerical results. FFT analyses of casing pressure signals showed a characteristic hump with varying band lower than blade passing frequency (BPF) appeared at near-stall stable conditions. This indicated that an unsteady phenomenon emerged from the near-tip flow field for the test rotor. The variation in the amplitude of characteristic hump implied that underlying flow mechanism leading to the emergence of unsteady phenomenon originated from a location near leading edge and within passage. Further STFT analyses showed that the active frequency of this unsteady phenomenon varied with time, thus leading to the appearance of excitation band in FFT analysis results. FFT and STFT analyses of monitoring results of numerical probes arranged in absolute frame showed a similar unsteady phenomenon appeared in the simulated near-tip flow field. Detailed analyses of simulated instantaneous flow fields and comparison with measured flow characteristics indicated that the unsteady flow phenomenon observed in experiments was equivalent to rotating instability (RI) as far as non-uniform tip loading distribution was concerned, and the formation and activity of tip secondary vortex (TSV) was the flow mechanism of emergence of RI.


Author(s):  
Fengnian Zhao ◽  
Penghui Ge ◽  
Hanyang Zhuang ◽  
David L. S. Hung

In-cylinder air flow structure makes significant impacts on fuel spray dispersion, fuel mixture formation, and flame propagation in spark ignition direct injection (SIDI) engines. While flow vortices can be observed during the early stage of intake stroke, it is very difficult to clearly identify their transient characteristics because these vortices are of multiple length scales with very different swirl motion strength. In this study, a high-speed time-resolved two-dimensional (2D) particle image velocimetry (PIV) is applied to record the flow structure of in-cylinder flow field along a swirl plane at 30 mm below the injector tip. First, a discretized method using flow field velocity vectors is presented to identify the location, strength, and rotating direction of vortices at different crank angles. The transients of vortex formation and dissipation processes are revealed by tracing the location and motion of the vortex center during the intake and compression strokes. In addition, an analysis method known as the wind-rose diagram, which is implemented for meteorological application, has been adopted to show the velocity direction distributions of 100 consecutive cycles. Results show that there exists more than one vortex center during early intake stroke and their fluctuations between each cycle can be clearly visualized. In summary, this approach provides an effective way to identify the vortex structure and to track the motion of vortex center for both large-scale and small-scale vortices.


Author(s):  
Suping Wen ◽  
Yuwei Hao ◽  
Zhixuan Zhang ◽  
Yifei Wang

The flow structure in the downstream region of the cooling fan has great impact on engine heat dissipation. An integrated PIV measurement system was designed and constructed to understand the flow field behind the cooling fan. In order to analyze the influence of interaction of different components on flow structure in downstream region, a series of experiments were conducted in four arrangements at three flow coefficients. The flow field was evaluated by velocity profile, vorticity, and turbulent intensity. These flow data reflect the effect of isolated components and their combinations quantitatively. This work provides useful information for engine cooling system design.


1997 ◽  
Vol 119 (2) ◽  
pp. 176-181 ◽  
Author(s):  
D. Tisserant ◽  
F. A. E. Breugelmans

The study of turbomachinery flow fields requires detailed experimental data. The rotating parts of turbomachines greatly limit the measurement techniques that can be used. Particle Image Velocimetry (PIV) appears to be a suitable tool to investigate the blade-to-blade flow in a rotor. The facility is a subsonic axial-flow compressor. The experimental apparatus enables the recording of a double-exposed photograph in a circumferential plane located at 85 percent of the blade height. The illumination plane has an axial direction and is provided by a pulsed ruby laser. The tracers used are submicron glycerine oil droplets. Data are processed by Young’s fringes method. Measurements were performed at 3000, 4500, and 6000 rpm with velocities in the range of 30 to 70 m/s. Steady operating conditions are chosen in such a way that the effect of radial velocity on PIV measurements can be neglected. Experimental problems encountered included homogeneous seeding of the flow field and laser light scattering from blade surfaces. The uncertainty affecting the velocity determination corresponds to 2 percent of the measured value. For a given set of operating conditions, 10 PIV pictures are recorded. The periodic flow field is approximated by averaging the experimental data point by point. Upstream and downstream velocity triangles are confirmed by measurements obtained from pressure probes. PIV measurement results were found to be similar to those of a blade-to-blade potential-flow calculation.


Author(s):  
Kazuhiro Yoshida ◽  
Yuki Kazuhisa ◽  
Hidetoshi Hashizume ◽  
Saburo Toda

A large number of pipe failures caused by wall thinning have been reported in nuclear power plants, some of which occur in a dual elbow or the vicinity of it. These pipe failures could be influenced by complex flow induced in the elbow. This study, therefore, aims at predicting the whole flow structure in the dual elbow as the first step by taking a secondary flow after the elbow by PIV measurement. A test section consists of two elbows that are 2-dimentionally connected with/without a straight pipe. They are made of acrylic resin. The diameter of the elbow is 56mm and the curvature radius ratio is 1.5. Reynolds number in this experiment is 4×104. It is confirmed that the flow structure in the dual elbow has specificity depending on the inlet flow condition to the elbow and that the secondary flow itself has swirling motion in a streamwise direction. The dual elbow seems to generate more complex and unstable flow field even when the flow field at the inlet of the elbow slightly changes from a fully developed flow. However, there is a strong possibility that putting a straight pipe between the two elbows makes it ease the occurrence of the complex flow field.


Sign in / Sign up

Export Citation Format

Share Document