Traceable Flow Rate Measurements With a Very Low Uncertainty Using Laser Doppler Anemometry

Author(s):  
Markus Juling ◽  
Jonas Steinbock ◽  
Andreas Weissenbrunner

Precise volume flow rate measurements are very important for various industrial applications. Here, one problem is that the service conditions of a flow meter used in the field differ significantly from the conditions present during calibration. The working conditions such as the pressure, the temperature and the flow profile greatly increase the uncertainty of the flow rate measurement. To address this problem, a new laser-optical flow rate standard (LFS) was developed at the Physikalisch-Technische Bundesanstalt (PTB) that allows flow meters to be calibrated on site, thus greatly reducing the uncertainty of the flow rate measurement. For the LFS, the velocity profile within the pipe is measured with laser Doppler anemometry (LDA). The profile is then integrated to calculate the volume flow rate. Various improvements to LDA have made it possible to measure the flow rate with an uncertainty of less than 0.15 % (k = 2). A comparison of the LFS with the primary standard for thermal energy at PTB, which has an uncertainty of less than 0.04 % (k = 2), revealed a maximum deviation of 0.07 % for Reynolds numbers from 105 to 106, thus verifying the uncertainty of the LFS.

2013 ◽  
Vol 33 ◽  
pp. 138-144 ◽  
Author(s):  
A. Zaaraoui ◽  
F. Ravelet ◽  
F. Margnat ◽  
S. Khelladi

2018 ◽  
Vol 29 (3) ◽  
pp. 034009 ◽  
Author(s):  
R Maury ◽  
A Strzelecki ◽  
C Auclercq ◽  
Y Lehot ◽  
S Loubat ◽  
...  

2010 ◽  
Vol 2010.3 (0) ◽  
pp. 163-164
Author(s):  
Michitsugu MORI ◽  
Yasushi TAKEDA ◽  
James N Barshinger ◽  
Mark Sapia ◽  
Larry Chi ◽  
...  

1998 ◽  
Vol 120 (3) ◽  
pp. 561-567 ◽  
Author(s):  
C. N. Ammerman ◽  
S. M. You

A photographic measurement technique is developed to quantify the vapor volume flow rate departing from a wire during boiling. The vapor flow rate is determined by measuring the volume of bubbles after departure from the boiling surface in consecutive frames of high-speed video. The measurement technique is more accurate and easier to implement than a previously developed photographic/laser Doppler anemometry (LDA) method. Use of the high-speed camera in place of a standard video camera eliminates the requirement for LDA-acquired bubble velocity measurements. The consecutive-photo method requires relatively few video images to be analyzed to obtain steady-state vapor volume flow rates. The volumetric flow rate data are used to calculate the latent heat transfer and, indirectly, sensible heat transfer which comprise the nucleate boiling heat flux. The measurement technique is applied to a 75-μm diameter platinum wire immersed in saturated FC-72.


Author(s):  
Denys Serediuk ◽  
Yuriy Pelikan ◽  
Oleksandr Bas ◽  
Roman Manulyak

The article describes the implemented system of pneumatic lifting of the bell of the state primary standard gas volume and volume flow rate units. The system is composed of unified elements of industrial air preparation. There are elements for air purification in front of the compressor, dehumidifier, refrigerator dryer. With the use of a pneumatic system, the bell can be filled with prepared air with different values of excess pressure. The system is installed as a backup to the current to increase security. Pneumatic lifting of the bell allows you to connect a set of cylinders with pure inert gases or mixtures thereof to determine the impact on the gas meters metrological characteristics.


Sign in / Sign up

Export Citation Format

Share Document