Dielectric Barrier Discharge Plasma Actuators for Active Flow Control, Ice Formation Detection and Ice Accumulation Prevention

Author(s):  
F. F. Rodrigues ◽  
M. Abdollahzadeh ◽  
J. Pascoa

Abstract An experimental investigation was conducted in order to understand the ability of plasma actuators to operate in three different modes: flow control, ice formation detection and ice accumulation prevention. When plasma actuators are operated with voltage levels, above the breakdown voltage, a plasma discharge surface is generated and with that, an ionic wind is produced. By using this phenomena, plasma actuators may be used to manipulate flow fields and control adjacent flows to the surface in which they are applied. However, a big part of the power applied to the device is dissipated as heat. Due to heat dissipation, the actuator surface temperature rises and the adjacent air is heated. Considering this, actuators may operate as ice prevention devices by heating the surface where they are applied and preventing the ice formation and accumulation. On the other hand, plasma actuators present a behavior similar to a capacitor and they may operate as a capacitive sensor. In the presence of water or ice on the top of the surface, the electric field changes and with that, several plasma actuator electrical features change as well. By monitoring that changes, the presence of water or ice on the top of the surface can be detected and the plasma actuator may be used as an ice sensor device. Therefore, in the present study a plasma actuator was experimentally tested operating in these three different operation modes and its feasibility to perform these different tasks is shown.

Author(s):  
Maria Grazia De Giorgi ◽  
Elisa Pescini ◽  
Fedele Marra ◽  
Antonio Ficarella

Nowadays several active flow control systems, particularly dielectric barrier discharge plasma actuators, appear to be effective for the control of flow stream separation and to improve performance of turbomachinery. However these applications require high actuation strength, higher than the one generated by conventional macro plasma actuators. Research is actually improving the design of plasma actuator in order to enhance the flow control capability and reduce the power consumption. In this contest, this work concerns the implementation of a micro plasma actuator for the active control in a compressor cascade. For this aim, firstly the micro actuator was developed and an experimental characterization of the flow induced by the device was done. The induced flow field was studied by means of Particle Image Velocimetry and Laser Doppler Velocimetry. The dissipated power was also evaluated. Experimental results were used to validate a multi-physics numerical model for the prediction of the body forces induced by the plasma actuator. Finally, the obtained body force field was used for modeling the separation control by means of the micro plasma actuator in a highly-loaded subsonic compressor stator.


Author(s):  
R Bardera-Mora ◽  
A Conesa ◽  
I Lozano

This experimental investigation presents a new active flow control technique based on plasma actuators applied to a backward facing step whose structure is similar to that formed by the hangar and flight deck of small naval vessels. These experiments were carried out by testing a simple frigate shape model settled at 0° wind over deck in a low-speed wind tunnel. Two different configurations of dielectric barrier discharge plasma actuator have been used to modify the flow downstream of the step. Results obtained investigating the flow by particle image velocimetry prove the capacity of plasma actuators by reducing instabilities and turbulence over the simple frigate shape model.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
F. Rodrigues ◽  
M. Abdollahzadeh ◽  
J. C. Pascoa ◽  
P. J. Oliveira

Abstract A novel design of the dielectric barrier discharge (DBD) actuator/sensor is proposed for mapping the location of icing on a surface. The new design uses segmentation of the embedded electrode of the DBD actuator. Segmented DBD actuator/sensor devices were fabricated and experimentally tested in terms of mechanical, thermal and sensing abilities. The sensing capability of the new actuator was analyzed experimentally. Stationary and dynamic icing tests were conducted and the electrical characteristics of the DBD were measured. A parametric study on the effect of the electrode dimensions on the degree of sensitivity of the device was performed. Experimental results show that by using a segmented configuration it is possible to sense the onset of ice formation and also to detect its location. Furthermore, it is possible to detect the initiation of the melting process and measure the time for the water/ice to be completely expelled from the surface. It is also shown that the segmented actuator has better deicing performance in comparison to the conventional actuators. It is also shown that the thermal and active flow control abilities are not compromised by the segmented configuration and thus this device may perform deicing, ice formation and location detection and active flow control.


2018 ◽  
Vol 32 (26) ◽  
pp. 1850315 ◽  
Author(s):  
Yuexiao Long ◽  
Huaxing Li ◽  
Xuanshi Meng ◽  
Jia Li ◽  
Zhengchao Xiang

Alternating current dielectric barrier discharge plasma actuators driven by steady and unsteady mode were experimentally optimized in a static atmosphere. The purpose of this optimization is to enhance the effective controllability of flow control. Electrical properties were evaluated using the measured voltage, current and power consumption data. The dielectric barrier with different materials was tested and the aerodynamic characteristics were identified by particle image velocimetry and electronic force balance. Meanwhile, the duty-cycle technique was applied to operate the actuator in unsteady mode. The dynamic characteristics of induced flow were analyzed by processing the results with the phase-locked method. The development of induced flow structure at different frequencies was compared. Results showed that the plasma actuator with 4 mm-thick Teflon dielectric barrier induced the maximum force and velocity of 75 mN/m and 5.6 m/s, respectively. The discharge frequency has little effect on the control authority at the kilohertz level. The dimensionless area of the induced flow is about [Formula: see text] under steady actuation. The phase-locked results confirm that the scale and strength of the induced vortex vary with the duty-cycle frequencies. The effectiveness of unsteady flow control can be explained as the promotion of the boundary layer and the mainstream.


2021 ◽  
Author(s):  
F. F. Rodrigues ◽  
M. Abdollahzadeh ◽  
J. Pascoa ◽  
L. Pires

Abstract Dielectric Barrier Discharge (DBD) plasma actuators are a popular topic of research within the active flow control field. Recently, these devices have gained interest for deicing and ice prevention applications and it has been proved they allow to perform simultaneously deicing and flow control. Studies have shown that the exposed electrode plays an important role on the surface temperature field of the plasma actuator. Thus, in the current study, by the first time, we investigate the influence of the exposed electrode thickness on the induced velocity flow field and surface temperature field. Three plasma actuators with different dielectric thicknesses (0.3 mm, 0.6 mm and 1.02 mm) were mounted with a thick exposed electrode (thickness of 0.8 mm). These three actuators with thick exposed electrode were experimentally studied and compared against other three plasma actuators with same dielectric thickness but with a thin exposed electrode (thickness of 80 μm). The DBD actuators were experimentally studied considering their electrical, mechanical and thermal behavior. The results are presented and discussed in order to understand the influence of the exposed electrode thickness on the mechanical and thermal plasma actuator performances.


2021 ◽  
Author(s):  
F. F. Rodrigues ◽  
J. Nunes-Pereira ◽  
M. Abdollahzadeh ◽  
J. Pascoa ◽  
S. Lanceros-Mendez

Abstract Dielectric Barrier Discharge (DBD) plasma actuators are simple devices with great potential for active flow control applications. Further, it has been recently proven their ability for applications in the area of heat transfer, such as film cooling of turbine blades or ice removal. The dielectric material used in the fabrication of these devices is essential in determining the device performance. However, the variety of dielectric materials studied in the literature is very limited and the majority of the authors only use Kapton, Teflon, Macor ceramic or poly(methyl methacrylate) (PMMA). Furthermore, several authors reported difficulties in the durability of the dielectric layer when the actuators operate at high voltage and frequency. Also, it has been reported that, after long operation time, the dielectric layer suffers degradation due to its exposure to plasma discharge, degradation that may lead to the failure of the device. Considering the need of durable and robust actuators, as well as the need of higher flow control efficiencies, it is highly important to develop new dielectric materials which may be used for plasma actuator fabrication. In this context, the present study reports on the experimental testing of dielectric materials which can be used for DBD plasma actuators fabrication. Plasma actuators fabricated of poly(vinylidene fluoride) (PVDF) and polystyrene (PS) have been fabricated and evaluated. Although these dielectric materials are not commonly used as dielectric layer of plasma actuators, their interesting electrical and dielectric properties and the possibility of being used as sensors, indicate their suitability as potential alternatives to the standard used materials. The plasma actuators produced with these nonstandard dielectric materials were analyzed in terms of electrical characteristics, generated flow velocity and mechanical efficiency, and the obtained results were compared with a standard actuator made of Kapton. An innovative calorimetric method was implemented in order to estimate the thermal power transferred by these devices to an adjacent flow. These results allowed to discuss the ability of these new dielectric materials not only for flow control applications but also for heat transfer applications.


Sign in / Sign up

Export Citation Format

Share Document