Improvements of Flow Control With Fluid Injection for the Suppression of Flow Instabilities in Pump-Turbines

2021 ◽  
Author(s):  
Sabri Deniz ◽  
Fabio Asaro

Abstract A stable and reliable pump-turbine operation under continuously expanding operating range requirement often imposes challenges on the hydraulic design of the pump-turbines and requires new developments. During a previous study carried out at the HSLU (Lucerne University of Applied Sciences, Switzerland), the flow instabilities of a low specific speed (i.e., nq = 25) pump-turbine were analyzed while a CFD methodology was developed through taking different numerical approaches and applying several turbulence models. The goal was to predict the turbine-mode characteristics of the reversible pump-turbines in the S-shaped region (at speed no load conditions) accurately as well as analyzing the flow features especially at off-design conditions. This CFD model was validated against the experimental data at different guide vane openings in turbine operating mode. Based on the analysis of the experimental data, flow visualization, and CFD results focusing especially on the flow features in the vaneless space and at the runner inlet, the onset and development of the flow instabilities were explored. Furthermore, a flow control technology that entailed injecting air and water in the vaneless space of a model pump-turbine was implemented for suppressing the flow instabilities and thus extending the operating range of the pump-turbine. Both air- and water-injection were applied by using an external energy source (compressor and pump) and discrete nozzles that are distributed in the vaneless space circumferentially. The S-shaped pump-turbine characteristics in turbine operating mode were modified so that the slope at speed no load conditions was no more positive indicating an improvement in the stability behavior. The analysis of the unsteady pressure data indicates the suppression of flow instability such as rotating stall with fluid injection in the vaneless space. The positive effect of fluid injection on the pump-turbine characteristics was also demonstrated in the CFD calculations. CFD was able to predict the pump-turbine dimensionless discharge, Kcm1, - speed, Ku1, characteristic curve with water injection correctly. After the CFD tool is validated for the prediction of the pump-turbine characteristics with fluid injection, further CFD simulations were carried out in order to improve the effectiveness of flow control and if possible, using less amount of injected fluid in the vaneless space. The goal was to optimize the fluid injection so that the instabilities can be suppressed with the lowest possible water/energy consumption. Parameters such as number of injection nozzles, nozzle position, nozzle diameter, and injection direction are varied. Several configurations of water injection system i.e., changing the number, location, and distribution of injection nozzles circumferentially and radially, direction of flow injection with respect to the main flow in the vaneless space, symmetrical and asymmetrical circumferential distribution of the nozzles in the vaneless space were analyzed using the CFD simulations. In addition to the flow injection in the vaneless space from the hub wall, fluid injection through the guide vanes was also investigated. The results of the fluid injection modifications were compared with the results of the baseline flow injection case. Using a parameter study, optimal nozzle configurations were found, that resulted in stable pump-turbine behavior in turbine operating mode with fewer injection nozzles and lower injected flow rate in comparison to the baseline case.

Author(s):  
Sabri Deniz ◽  
Martin von Burg ◽  
Manuel Tiefenthaler

Abstract This the second part of a two-part paper focusing on the flow instabilities of low-specific pump turbines. In this part, results of the flow control application with fluid injection (using both water and air) in the vaneless space in order to suppress the flow instabilities of a low specific speed model pump-turbine in turbine mode operation at HSLU (Lucerne University of Applied Sciences) Switzerland are presented. Based on the analysis of the experimental data, flow visualization, and CFD results focusing especially on the flow features in the vaneless space and at the runner inlet, the onset and development of the flow instabilities are explored as presented in the first part of this paper. Based on these analyses, the flow control technology by injecting air and water as well as suction of the fluid in the vaneless space of the model pump-turbine is implemented for suppressing the flow instabilities and thus extending the operating range of the pump-turbine. Both air- and water-injection are applied by using an external energy source (compressor and pump) and discrete nozzles circumferentially distributed in the vaneless space. The S-shaped pump-turbine characteristics in turbine operating mode are modified so that the slope at speed no load conditions is no more positive meaning an improvement in the stability behavior. To the best of our knowledge, this is the first successful application of flow control with fluid injection in the vaneless space of pump-turbines. Fluid injection is applied at two different guide vane openings, i.e. at 6° and 18°. The analysis of the unsteady pressure data indicates the suppression of flow instability such as rotating stall with fluid injection in the vaneless space. The water injection is more effective than the air injection for modifying the slope of the pump-turbine characteristics.


Author(s):  
Sabri Deniz ◽  
Armando Del Rio ◽  
Martin von Burg ◽  
Manuel Tiefenthaler

Abstract This is the first part of a two-part paper focusing on the flow instabilities of low-specific pump turbines. In this part, results of the CFD simulations and experiments of the research carried out on a low specific speed model pump-turbine at HSLU (Lucerne University of Applied Sciences) Switzerland are presented. The requirements of a stable and reliable pump-turbine operation under continuously expanding operating ranges, challenges the hydraulic design and requires new developments. Previous research at the HSLU [1] analyzed the instabilities of a medium specific speed (i.e. nq = 45) pump turbine. This paper presents the results of experimental (model pump-turbine at the test rig) and numerical (CFD) investigations of the pump-turbine instabilities of a low specific speed (nq = 25) pump-turbine in the turbine operating mode in the region of S-shaped characteristics (that is where the pump-turbine is synchronized and oscillations may occur during load rejection). The four-quadrant characteristics of a low specific speed model pump-turbine with two similar runners differentiating in the size (diameter) are measured. Testing of both runners with the same guide vane system provided information about the effects of the increased vaneless space (the distance between the guide vanes and runner) on the pump-turbine performance and stability both in turbine- and pump operating modes. A CFD methodology by using different numerical approaches and applying several turbulence models is developed in order to accurately predicting the characteristics of the reversible pump-turbines in the S-shaped region (speed no load conditions) as well as analyzing the flow features especially at off-design conditions. This CFD model is validated against the experimental data at 6° and 18° guide vane openings in turbine operating mode. With the measured data of the unsteady pressure measurements and detailed investigation of unstable ranges on the pump-turbine characteristics, flow instabilities in the low-specific speed model pump-turbine are analyzed. Relevant frequencies such as rotating stall, steady and unsteady vortex formations are determined. Based on the analysis of the experimental data and CFD results focusing especially on the flow features in the vaneless space and at the runner inlet, the onset and development of the flow instabilities are explored.


2021 ◽  
Author(s):  
Subodh Khullar ◽  
Krishna M. Singh ◽  
Michel J. Cervantes ◽  
Bhupendra K. Gandhi

Abstract The presence of excessive swirl at the runner outlet in Francis turbines operating at part load leads to the development of flow instabilities such as the rotating vortex rope (RVR). The presence of RVR causes severe pressure pulsations, power swings, and fatigue damage in the turbine unit. Air and water injection in the draft tube have been reported to reduce the detrimental effects of RVR formation in the Francis turbines. Air injection is one of the oldest and most widely used methods. In contrast, water jet injection is a relatively new methodology. The present work reports the numerical simulations performed to compare the respective effectiveness of these methods to mitigate the RVR and the related flow instabilities. The efficacy of the two methods has been compared based on the pressure pulsations and pressure recovery in the draft tube cone. The results show that the air and water injection influence the draft tube flow field in different ways. Both air and water injection led to a reduction in pressure pulsation magnitudes in the draft tube cone. However, the air injection led to a negative pressure recovery while the water injection improved the draft tube action.


2021 ◽  
Author(s):  
Abderahmane Marouf ◽  
Agathe Chouippe ◽  
Jan B. Vos ◽  
Dominique Charbonnier ◽  
Alain Gehri ◽  
...  

2019 ◽  
Author(s):  
Dzu Nguyen ◽  
Innis Macleod ◽  
Donald Taylor ◽  
Laurence Murray ◽  
Denis Zavyalov ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
James Yang ◽  
Ting Liu ◽  
Wenhong Dai ◽  
Penghua Teng

In Sweden, the dam-safety guidelines call for an overhaul of many existing bottom outlets. During the opening of an outlet gate, understanding the transient air-water flow is essential for its safe operation, especially under submerged tailwater conditions. Three-dimensional CFD simulations are undertaken to examine air-water flow behaviors at both free and submerged outflows. The gate, hoisted by wire ropes and powered by AC, opens at a constant speed. A mesh is adapted to follow the gate movement. At the free outflow, the CFD simulations and model tests agree well in terms of outlet discharge capacity. Larger air vents lead to more air supply; the increment becomes, however, limited if the vent area is larger than 10 m2. At the submerged outflow, a hydraulic jump builds up in the conduit when the gate reaches approximately 45% of its full opening. The discharge is affected by the tailwater and slightly by the flow with the hydraulic jump. The flow features strong turbulent mixing of air and water, with build-up and break-up of air pockets and collisions of defragmented water bodies. The air demand rate is several times as much as required by steady-state hydraulic jump with free surface.


Sign in / Sign up

Export Citation Format

Share Document