Investigation of the Flow Instabilities of Low Specific Speed Pump-Turbines Part 2: Flow Control With Fluid Injection

2021 ◽  
Author(s):  
Sabri Deniz ◽  
Manuel Tiefenthaler ◽  
Martin Von Burg
Author(s):  
Sabri Deniz ◽  
Martin von Burg ◽  
Manuel Tiefenthaler

Abstract This the second part of a two-part paper focusing on the flow instabilities of low-specific pump turbines. In this part, results of the flow control application with fluid injection (using both water and air) in the vaneless space in order to suppress the flow instabilities of a low specific speed model pump-turbine in turbine mode operation at HSLU (Lucerne University of Applied Sciences) Switzerland are presented. Based on the analysis of the experimental data, flow visualization, and CFD results focusing especially on the flow features in the vaneless space and at the runner inlet, the onset and development of the flow instabilities are explored as presented in the first part of this paper. Based on these analyses, the flow control technology by injecting air and water as well as suction of the fluid in the vaneless space of the model pump-turbine is implemented for suppressing the flow instabilities and thus extending the operating range of the pump-turbine. Both air- and water-injection are applied by using an external energy source (compressor and pump) and discrete nozzles circumferentially distributed in the vaneless space. The S-shaped pump-turbine characteristics in turbine operating mode are modified so that the slope at speed no load conditions is no more positive meaning an improvement in the stability behavior. To the best of our knowledge, this is the first successful application of flow control with fluid injection in the vaneless space of pump-turbines. Fluid injection is applied at two different guide vane openings, i.e. at 6° and 18°. The analysis of the unsteady pressure data indicates the suppression of flow instability such as rotating stall with fluid injection in the vaneless space. The water injection is more effective than the air injection for modifying the slope of the pump-turbine characteristics.


2021 ◽  
Author(s):  
Sabri Deniz ◽  
Fabio Asaro

Abstract A stable and reliable pump-turbine operation under continuously expanding operating range requirement often imposes challenges on the hydraulic design of the pump-turbines and requires new developments. During a previous study carried out at the HSLU (Lucerne University of Applied Sciences, Switzerland), the flow instabilities of a low specific speed (i.e., nq = 25) pump-turbine were analyzed while a CFD methodology was developed through taking different numerical approaches and applying several turbulence models. The goal was to predict the turbine-mode characteristics of the reversible pump-turbines in the S-shaped region (at speed no load conditions) accurately as well as analyzing the flow features especially at off-design conditions. This CFD model was validated against the experimental data at different guide vane openings in turbine operating mode. Based on the analysis of the experimental data, flow visualization, and CFD results focusing especially on the flow features in the vaneless space and at the runner inlet, the onset and development of the flow instabilities were explored. Furthermore, a flow control technology that entailed injecting air and water in the vaneless space of a model pump-turbine was implemented for suppressing the flow instabilities and thus extending the operating range of the pump-turbine. Both air- and water-injection were applied by using an external energy source (compressor and pump) and discrete nozzles that are distributed in the vaneless space circumferentially. The S-shaped pump-turbine characteristics in turbine operating mode were modified so that the slope at speed no load conditions was no more positive indicating an improvement in the stability behavior. The analysis of the unsteady pressure data indicates the suppression of flow instability such as rotating stall with fluid injection in the vaneless space. The positive effect of fluid injection on the pump-turbine characteristics was also demonstrated in the CFD calculations. CFD was able to predict the pump-turbine dimensionless discharge, Kcm1, - speed, Ku1, characteristic curve with water injection correctly. After the CFD tool is validated for the prediction of the pump-turbine characteristics with fluid injection, further CFD simulations were carried out in order to improve the effectiveness of flow control and if possible, using less amount of injected fluid in the vaneless space. The goal was to optimize the fluid injection so that the instabilities can be suppressed with the lowest possible water/energy consumption. Parameters such as number of injection nozzles, nozzle position, nozzle diameter, and injection direction are varied. Several configurations of water injection system i.e., changing the number, location, and distribution of injection nozzles circumferentially and radially, direction of flow injection with respect to the main flow in the vaneless space, symmetrical and asymmetrical circumferential distribution of the nozzles in the vaneless space were analyzed using the CFD simulations. In addition to the flow injection in the vaneless space from the hub wall, fluid injection through the guide vanes was also investigated. The results of the fluid injection modifications were compared with the results of the baseline flow injection case. Using a parameter study, optimal nozzle configurations were found, that resulted in stable pump-turbine behavior in turbine operating mode with fewer injection nozzles and lower injected flow rate in comparison to the baseline case.


Author(s):  
Sabri Deniz ◽  
Armando Del Rio ◽  
Martin von Burg ◽  
Manuel Tiefenthaler

Abstract This is the first part of a two-part paper focusing on the flow instabilities of low-specific pump turbines. In this part, results of the CFD simulations and experiments of the research carried out on a low specific speed model pump-turbine at HSLU (Lucerne University of Applied Sciences) Switzerland are presented. The requirements of a stable and reliable pump-turbine operation under continuously expanding operating ranges, challenges the hydraulic design and requires new developments. Previous research at the HSLU [1] analyzed the instabilities of a medium specific speed (i.e. nq = 45) pump turbine. This paper presents the results of experimental (model pump-turbine at the test rig) and numerical (CFD) investigations of the pump-turbine instabilities of a low specific speed (nq = 25) pump-turbine in the turbine operating mode in the region of S-shaped characteristics (that is where the pump-turbine is synchronized and oscillations may occur during load rejection). The four-quadrant characteristics of a low specific speed model pump-turbine with two similar runners differentiating in the size (diameter) are measured. Testing of both runners with the same guide vane system provided information about the effects of the increased vaneless space (the distance between the guide vanes and runner) on the pump-turbine performance and stability both in turbine- and pump operating modes. A CFD methodology by using different numerical approaches and applying several turbulence models is developed in order to accurately predicting the characteristics of the reversible pump-turbines in the S-shaped region (speed no load conditions) as well as analyzing the flow features especially at off-design conditions. This CFD model is validated against the experimental data at 6° and 18° guide vane openings in turbine operating mode. With the measured data of the unsteady pressure measurements and detailed investigation of unstable ranges on the pump-turbine characteristics, flow instabilities in the low-specific speed model pump-turbine are analyzed. Relevant frequencies such as rotating stall, steady and unsteady vortex formations are determined. Based on the analysis of the experimental data and CFD results focusing especially on the flow features in the vaneless space and at the runner inlet, the onset and development of the flow instabilities are explored.


Author(s):  
Cong Wang ◽  
Yongxue Zhang ◽  
Hucan Hou ◽  
Zhiyi Yuan

Low efficiency and bad cavitation performance restrict the development of the ultra-low specific-speed centrifugal pump (ULSSCP). In this research, combined turbulent boundary layer theory with two-dimension design and two-dimension viscous hydraulic design method has been proposed to redesign a ULSSCP. Through the solution of the displacement thickness in the boundary layer, a less curved blade profile with a larger outlet angle was obtained. Then the hydraulic and cavitation performance of the reference pump and the designed pump were numerically studied. The comparison of performance of the reference pump calculated by the numerical and experimental results revealed a better agreement. Research shows that the average hydraulic efficiency and head of the designed pump improve by 2.9% and 3.3%, respectively. Besides, the designed pump has a better cavitation performance. Finally, through the internal flow analysis with entropy production diagnostic model, a 24.8% drop in head loss occurred in the designed pump.


Author(s):  
Hucan Hou ◽  
Yongxue Zhang ◽  
Xin Zhou ◽  
Zhitao Zuo ◽  
Haisheng Chen

The ultra-low specific speed centrifugal pump has been widely applied in aerospace engineering, metallurgy, and other industrial fields. However, its hydraulic design lacks specialized theory and method. Moreover, the impeller and volute are designed separately without considering their coupling effect. Therefore, the optimal design is proposed in this study based on the local entropy production theory. Four geometrical parameters are selected to establish orthogonal design schemes including blade outlet setting angle, wrapping angle volute inlet width, and throat area. Subsequently, a 3D steady flow with Reynolds stress turbulent model and energy equation model is numerically conducted and the entropy production is calculated by a user-defined function code. The range analysis is made to identify the optimal scheme indicating that the combination of local entropy production and orthogonal design is feasible on pump optimization. The optimal pump is visibly improved with an increase of 1.08% in efficiency. Entropy production is decreased by 16.75% and 6.03% in impeller and volute, respectively. High energy loss areas are captured and explained in terms of helical vortex and wall friction, and the turbulent and wall entropy production are respectively reduced by 3.82% and 14.34% for the total pump.


2021 ◽  
Vol 9 (2) ◽  
pp. 121
Author(s):  
Yang Yang ◽  
Ling Zhou ◽  
Hongtao Zhou ◽  
Wanning Lv ◽  
Jian Wang ◽  
...  

Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, determines the priority of the various geometric factors of the drainage trough on the pump performance, and obtains the optimal impeller drainage trough scheme. The influence of drainage tank structure on the internal flow of a low-specific speed centrifugal pump is also analyzed. First, based on the experimental validation of the initial model, it is determined that the numerical simulation method used in this paper is highly accurate in predicting the performance of low-specific speed centrifugal pumps. Secondly, based on the three factors and four levels of the impeller drainage trough in the orthogonal test, the orthogonal test plan is determined and the orthogonal test results are analyzed. This work found that slit diameter and slit width have a large impact on the performance of low-specific speed centrifugal pumps, while long and short vane lap lengths have less impact. Finally, we compared the internal flow distribution between the initial model and the optimized model, and found that the slit structure could effectively reduce the pressure difference between the suction side and the pressure side of the blade. By weakening the large-scale vortex in the flow path and reducing the hydraulic losses, the drainage trough impellers obtained based on orthogonal tests can significantly improve the hydraulic efficiency of low-specific speed centrifugal pumps.


Sign in / Sign up

Export Citation Format

Share Document