Influence of the Blade Design Parameters on Hydraulic Noise Generation by a Low Specific Speed Radial Pump With Narrow Channel Flow

2021 ◽  
Author(s):  
Rajavamsi Gangipamula ◽  
Pritanshu Ranjan ◽  
Ranjit S. Patil

Abstract Present work aims to investigate the hydro acoustic behavior of a typical low specific speed radial type centrifugal pump with narrow channel impeller passage. The blade design parameters play an important role in hydraulic noise generation by a low specific speed radial pump with narrow impeller channels. Though, these pumps are hydraulically efficient for a given design point, the hydraulic noise production may be higher at duty point. The blade passage length along with the outlet width of the impeller are the two main design parameters of a radial impeller with narrow channels, which can impact the flow quality along the impeller blade passage. To understand the effect of the narrow channel, initially steady state simulation is conducted to predict and validate the hydraulic performance. Then transient simulations were conducted using Detached Eddy Simulation (DES) using STAR-CCM+ to predict the hydro acoustic behavior of the pump in terms of pressure fluctuations and far field noise spectra of the pump at specific points. The velocity profiles along the impeller channels, shows the formation of wake region, which strongly affects the jet wake flow phenomenon near impeller trailing edge. This results in high pressure fluctuations near impeller outlet.

Author(s):  
Can Kang ◽  
Ning Mao ◽  
Chen Pan ◽  
Yang Zhu ◽  
Bing Li

A low-specific-speed centrifugal pump equipped with long and short blades is studied. Emphasis is placed on the pump performance and inner flow characteristics at low flow rates. Each short blade is intentionally shifted towards the back surface of the neighboring long blade, and the outlet parts of the short blades are uniformly shortened. Unsteady numerical simulation is conducted to disclose inner flow patterns associated with the modified design. Thereby, a comparison is enabled between the two schemes featured by different short blades. Both practical operation data and numerical results support that the deviation and cutting of the short blades can eliminate the positive slope of pump head curve at low flow rates. Therefore, the modification of short blades improves the pump operation stability. Due to the shortening of the outlet parts of the short blades, velocity distributions between impeller outlet and radial diffuser inlet exhibit explicitly altered circumferential flow periodicity. Pressure fluctuations in the radial diffuser are complex in terms of diversified periodicity and amplitudes. Flow rate influences pressure fluctuations in the radial diffuser considerably. As flow rate decreases, the regularity of the orbit of hydraulic loads exerted upon the impeller collapses while hydraulic loads exerted upon the short blades remain circumferentially periodic.


2012 ◽  
Vol 152-154 ◽  
pp. 935-939 ◽  
Author(s):  
Qiang Fu ◽  
Shou Qi Yuan ◽  
Rong Sheng Zhu

In order to study the rules of pressure fluctuation and the radial force under different positions in a centrifugal pump with low specific speed, and to find the relationship between each other, the three-dimensional ,unsteady Reynolds-averaged Navier-stokes equations with shear stress transport turbulent models were solved. The pressure fluctuation was obtained. The results showed that the pressure fluctuations were visible. The pressure fluctuations in the volute were relatively low at the design flow rate condition. The blade passing frequency dominates the pressure fluctuations, high frequency contents were found on the outlet of impeller but no high frequency information occured in casing. The radial force on the impeller was unsteady especially at the small flow rate.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Einar Agnalt ◽  
Igor Iliev ◽  
Bjørn W. Solemslie ◽  
Ole G. Dahlhaug

The rotor stator interaction in a low specific speed Francis model turbine and a pump-turbine is analyzed utilizing pressure sensors in the vaneless space and in the guide vane cascade. The measurements are analyzed relative to the runner angular position by utilizing an absolute encoder mounted on the shaft end. From the literature, the pressure in the analyzed area is known to be a combination of two effects: the rotating runner pressure and the throttling of the guide vane channels. The measured pressure is fitted to a mathematical pressure model to separate the two effects for two different runners. One turbine with 15+15 splitter blades and full-length blades and one pump-turbine with six blades are investigated. The blade loading on the two runners is different, giving different input for the pressure model. The main findings show that the pressure fluctuations in the guide vane cascade are mainly controlled by throttling for the low blade loading case and the rotating runner pressure for the higher blade loading case.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3348
Author(s):  
Wei Yang ◽  
Xiaoyu Lei ◽  
Benqing Liu

A three-dimensional inverse design of a low specific speed turbine is studied, and a set of design criteria for low specific speed turbine runner is proposed, including blade loading distributions and blade lean angles. The characteristics of the loading parameters for low specific speed turbine runner are summarized by analyzing the suction performance of different loading positions, loading slopes and blade lean angles based on the orthogonal experiment design and range analysis. It is found that the blade loading distribution at the band plays a more important role than it does at the crown and it should be fore loaded for both band and crown. The blade lean angle at the blade leading edge should be negative. Then, the blade is optimized through the inverse method by fixing blade lean angle, based on the response surface method. After seeking the optimal value of the response surface function, the optimal result of the design parameters is obtained, which is in conformity with the design criteria and verifies the rationality of the established design criteria for low specific speed turbine.


2019 ◽  
Vol 21 (5) ◽  
pp. 1441-1455 ◽  
Author(s):  
Yong Wang ◽  
Kaikai Luo ◽  
Houlin Liu ◽  
Jie Chen ◽  
Yu Li ◽  
...  

2017 ◽  
Vol 19 (5) ◽  
pp. 3779-3796 ◽  
Author(s):  
Desheng Zhang ◽  
Weidong Shi ◽  
Linwei Tan ◽  
Ling Zhou ◽  
Xiaotong Cai

Author(s):  
Cong Wang ◽  
Yongxue Zhang ◽  
Hucan Hou ◽  
Zhiyi Yuan

Low efficiency and bad cavitation performance restrict the development of the ultra-low specific-speed centrifugal pump (ULSSCP). In this research, combined turbulent boundary layer theory with two-dimension design and two-dimension viscous hydraulic design method has been proposed to redesign a ULSSCP. Through the solution of the displacement thickness in the boundary layer, a less curved blade profile with a larger outlet angle was obtained. Then the hydraulic and cavitation performance of the reference pump and the designed pump were numerically studied. The comparison of performance of the reference pump calculated by the numerical and experimental results revealed a better agreement. Research shows that the average hydraulic efficiency and head of the designed pump improve by 2.9% and 3.3%, respectively. Besides, the designed pump has a better cavitation performance. Finally, through the internal flow analysis with entropy production diagnostic model, a 24.8% drop in head loss occurred in the designed pump.


Author(s):  
Hucan Hou ◽  
Yongxue Zhang ◽  
Xin Zhou ◽  
Zhitao Zuo ◽  
Haisheng Chen

The ultra-low specific speed centrifugal pump has been widely applied in aerospace engineering, metallurgy, and other industrial fields. However, its hydraulic design lacks specialized theory and method. Moreover, the impeller and volute are designed separately without considering their coupling effect. Therefore, the optimal design is proposed in this study based on the local entropy production theory. Four geometrical parameters are selected to establish orthogonal design schemes including blade outlet setting angle, wrapping angle volute inlet width, and throat area. Subsequently, a 3D steady flow with Reynolds stress turbulent model and energy equation model is numerically conducted and the entropy production is calculated by a user-defined function code. The range analysis is made to identify the optimal scheme indicating that the combination of local entropy production and orthogonal design is feasible on pump optimization. The optimal pump is visibly improved with an increase of 1.08% in efficiency. Entropy production is decreased by 16.75% and 6.03% in impeller and volute, respectively. High energy loss areas are captured and explained in terms of helical vortex and wall friction, and the turbulent and wall entropy production are respectively reduced by 3.82% and 14.34% for the total pump.


Sign in / Sign up

Export Citation Format

Share Document