Development of Polymer-Based Materials for Proton Exchange Membrane Fuel Cell Bipolar Plates: Ways to Increase Through-Plane Electrical Conductivity and to Decrease Gas Permeability

Author(s):  
Frej Mighri ◽  
Luc Nguyen

This research work aimed at developing, by twinscrew extrusion process, electrically conductive sheets for proton exchange membrane fuel cell (PEMFC) bipolar plates. For this, a series of highly conductive blends were carefully formulated from a co-continuous mixture of polythylene terephthalate (PET)/polyvinylidene fluoride (PVDF) and high specific surface area carbon black (CB) and graphite (GR) conductive additives. Several major factors, such as CB/GR content, PVDF/PET composition and morphology, and also PET crystallinity were shown to have remarkable effects on these three main properties.

Author(s):  
Munzer S. Y. Ebaid ◽  
Mohamad Y. Mustafa

The design of the fuel cell plays a major role in determining their cost. It is not only the cost of materials that increases the cost of the fuel cell, but also the manufacturing techniques and the need for skilled technicians for assembling and testing the fuel cell. The work presented in this paper is part of a research work aims to design and manufacture a proton exchange membrane (PEM) modular fuel cell of 100 W output at low cost using conventional materials and production techniques, then testing the fuel cell to validate its performance. This paper will be dealing only with the design of a modular fuel cell that can be mass produced and used to set up a larger fuel cell stack for stationary applications (6 kW) which is capable of powering a medium sized household. The design for 100 W fuel cell module will include the calculations for the main dimensions of the fuel cell components, mass flow rate of reactants, water production, heat output, heat transfer and the cooling system. This work is intended to facilitate material and process selection prior to manufacturing alternatives prior to capital investment for wide-scale production. The authors believe that the paper would lead to a stimulating discussion.


2010 ◽  
Vol 160-162 ◽  
pp. 1469-1475
Author(s):  
Nai Bao Huang ◽  
Cheng Hao Liang ◽  
Guo Qiang Lin ◽  
Li Shuang Xu ◽  
Bao Lian Li

By using electrochemical techniques, the electrochemical characteristic of Cr-based film coated 304 stainless steel (304SS) as proton exchange membrane fuel cell (PEMFC) bipolar plates, which was deposited by cathodic arc deposition technology, was studied. The results indicated that Cr, CrN, (TiCr)N and (TiN+Ti) film could not only decreased the steel’s contact resistance but also improved its corrosion resistance and the fuel cell stack’s performance. Since Cr, (CrN) and (TiCrN) film were more compact than (TiN+Ti) film, which contained the oxides of Ti, as bipolar plates, the performance for all film change in the following order: Cr film ≈(CrN) film ≈ (TiCrN) film >(TiN+Ti) film.


2019 ◽  
Vol 969 ◽  
pp. 461-465
Author(s):  
Matha Prasad Adari ◽  
P. Lavanya ◽  
P. Hara Gopal ◽  
T.Praveen Sagar ◽  
S. Pavani

Proton exchange membrane fuel cell (PEMFC) system is an advanced power system for the future that is sustainable, clean and environmental friendly. The flow channels present in bipolar plates of a PEMFC are responsible for the effective distribution of the reactant gases. Uneven distribution of the reactants can cause variations in current density, temperature, and water content over the area of a PEMFC, thus reducing the performance of PEMFC. By using Serpentine flow field channel, the performance is increased. Two types of serpentine flow field channels are implemented such as curved serpentine flow field channel and normal serpentine flow field channels. The result shows that curved serpentine flow field channel gives better current density and power density, thus increasing the performance of PEMFC.


Sign in / Sign up

Export Citation Format

Share Document