Fatigue Crack Growth Life Prediction for Surface Crack Located in Stress Concentration Part Based on 3D-FEM

Author(s):  
Youichi Yamashita ◽  
Masaharu Shinozaki ◽  
Yuusuke Ueda ◽  
Kenji Sakano

Fatigue crack growth prediction methods using three dimensional finite element analyses were investigated to improve the predictability of part-through surface crack growth life. First, a direct analysis method of cyclic finite element analysis was adopted. Fatigue crack growth was predicted on a step by step basis from the Paris’ law using stress intensity factor range (ΔK) calculated by 3D-FEM. This method takes the procedure of cyclic operation of FE-analysis modeled with crack tip elements, crack growth increment calculation and remeshing of FE-model. Second, a method based on influence function method for ΔK calculation directly using 3D-FE-analysis result has been developed and applied. It was found that crack growth prediction based on step by step finite element method and the method based on the influence function method showed good correlation with the experimental results if Paris’ law coefficient C determined by CT specimen was appropriately used for semi-elliptical surface crack.

Author(s):  
Adrian Loghin ◽  
Shakhrukh Ismonov

Abstract Assessing the crack propagation life of components is a critical aspect in evaluating the overall structural integrity of a mechanical structure that poses a risk of failure. Engineers often rely on industry standards and fatigue crack growth tools such as NASGRO [1] and AFGROW [2] to perform life assessment for different structural components. A good understanding of material damage tolerant capabilities, and the component’s loading mission during service conditions are required along with the availability of generic fracture mechanics models implemented in the lifing tools. Three-dimensional (3D) linear elastic fracture mechanics (LEFM) finite element modeling (FEM) is also a viable alternative to simulate crack propagation in a component. This method allows capturing detailed geometry of the component and representative loading conditions which can be crucial to accurately simulate the three dimensionality of the propagating crack shape and further determine the associated loading cycles. In comparison to a generic model, the disadvantage of the 3D FEM is the extended runtime. One feasible way to benefit from 3D modeling is to employ it to understand the crack front evolution and growth path for the representative loading condition. Mode I stress intensity factors (KI) along the predetermined crack growth path can be generated for use in fatigue crack growth tools such as NASGRO. In the current study, such a 3D FEM lifing process is presented using a classical bolt-nut assembly, components that are commonly used in engineering design. First, KI solutions for a fixed crack aspect ratio a/c = 1 are benchmarked against a similar solution available in NASGRO. Next, a predefined set of crack shapes and sizes are simulated using 3D FEA. A machine learning model Gaussian Process (GP) was trained to predict the KI solutions of the 3D model, which in turn was used in the crack propagation simulation to accelerate the life assessment process. Verification of the implemented procedure is done by correlating the crack growth curves predicted from GP to the results obtained directly from 3D FE crack propagation method.


2012 ◽  
Vol 248 ◽  
pp. 469-474
Author(s):  
M.H. Gozin ◽  
M. Aghaie-Khafri

Plasticity induced crack closure (PICC) simulation using finite element analyses has been concerned by many researchers. In the present investigation elliptical corner fatigue crack growth from a hole was predicted using PICC method. An elastic-plastic finite element model is built with a suitably refined mesh and time-dependent remote tractions are applied to simulate cyclic loading. In a 3D geometry the crack opening value will vary along the crack front. For simplicity this shape evolution is neglected and the crack front is extended uniformly. Predicted fatigue life using crack closure method for elliptical corner crack is in good agreement with the experimental data. The results obtained highlighted the sensitivity of crack closure method to the opening stress intensity values.


2004 ◽  
Vol 126 (1) ◽  
pp. 160-166 ◽  
Author(s):  
Y. Yamashita ◽  
M. Shinozaki ◽  
Y. Ueda ◽  
K. Sakano

Fatigue crack growth prediction methods using three-dimensional finite element analyses were investigated to improve the predictability of part-through surface crack growth life. First, a direct analysis method of cyclic finite element analysis was adopted. Fatigue crack growth was predicted on a step by step basis from the Paris’ law using stress intensity factor range ΔK calculated by the three-dimensional finite element method. This method takes the procedure of cyclic operation of finite element analysis modeled with crack tip elements, crack growth increment calculation and remeshing of the finite element model. Second, a method based on the influence function method for the ΔK calculation directly using three-dimensional finite element method analysis result has been developed and applied. It was found that crack growth prediction based on the step by step finite element method and the method based on the influence function method showed good correlation with the experimental results if Paris’ law coefficient C, determined by CT specimen, was appropriately used for a semi-elliptical surface crack.


2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


2008 ◽  
Vol 43 (16) ◽  
pp. 5569-5573 ◽  
Author(s):  
Ahmet Samanci ◽  
Ahmet Avci ◽  
Necmettin Tarakcioglu ◽  
Ömer Sinan Şahin

Sign in / Sign up

Export Citation Format

Share Document