Investigation of the 3D Unsteady Rotor Pressure Field in a HP Turbine Stage

Author(s):  
E. Valenti ◽  
J. Halama ◽  
R. De´nos ◽  
T. Arts

This paper presents steady and unsteady pressure measurements at three span locations (15, 50 and 85%) on the rotor surface of a transonic turbine stage. The data are compared with the results of a 3D unsteady Euler stage calculation. The overall agreement between the measurements and the prediction is satisfactory. The effects of pressure ratio and Reynolds number are discussed. The rotor time-averaged Mach number distribution is very sensitive to the pressure ratio of the stage since the incidence of the flow changes as well as the rotor exit Mach number. The time-resolved pressure field is dominated by the vane trailing edge shock waves. The incidence and intensity of the shock strongly varies from hub to tip due to the radial equilibrium of the flow at the vane exit. The decrease of the pressure ratio attenuates significantly the amplitude of the fluctuations. An increase of the pressure ratio has less significant effect since the change in the vane exit Mach number is small. The effect of the Reynolds number is weak for both the time-averaged and the time-resolved rotor static pressure at mid-span, while it causes an increase of the pressure amplitudes at the two other spans.

Author(s):  
Lamyaa A. El-Gabry

A computational study has been performed to predict the heat transfer distribution on the blade tip surface for a representative gas turbine first stage blade. CFD predictions of blade tip heat transfer are compared to test measurements taken in a linear cascade, when available. The blade geometry has an inlet Mach number of 0.3 and an exit Mach number of 0.75, pressure ratio of 1.5, exit Reynolds number based on axial chord of 2.57×106, and total turning of 110 deg. Three blade tip configurations were considered; they are flat tip, a full perimeter squealer, and an offset squealer where the rim is offset to the interior of the tip perimeter. These three tip geometries were modeled at three tip clearances of 1.25, 2.0, and 2.75% of blade span. The tip heat transfer results of the numerical models agree fairly well with the data and are comparable to other CFD predictions in the open literature.


2003 ◽  
Vol 125 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Mathieu Helene ◽  
Mihai Arghir ◽  
Jean Frene

The present work investigates the flow in the feeding recess of a hybrid journal bearing. Numerical integration of the complete Navier-Stokes equations was performed with an appropriate turbulence model. Of primary concern is the pressure field on the rotating journal surface that is commonly known as the recess pressure pattern. The goal of the work is to determine the influences of fluid compressibility, operating conditions and recess geometry. Reference parameters selected for this study comprise feeding Reynolds number Rea of 2.105, sliding Reynolds number Rec of 5.103 and recess depth over film thickness ratio e/H of 2.2. Compressibility was considered first. Three values of the axial exit Mach number were selected for computation, namely 0.2, 0.45, and 0.7. As no significant variation was found, the Mach number was fixed at 0.45 in subsequent studies concerning other parameters:     Feeding Reynolds number, Rea       2.104,2.105,4.105     Recess depth, e/H           0, 2.2, 8     Feedhole axis inclination        90°, 135°, 165°     Feedhole location (Figs. 1(a) and 13)   centered, downstream offset. As each parameter is varied, wire mesh plot of pressure and its sectional profiles are examined and effects of varying various parameters are discussed in reference to flow processes as they may affect the support characteristics of the hybrid journal bearing.


Author(s):  
F. Didier ◽  
R. De´nos ◽  
T. Arts

This experimental investigation reports the convective heat transfer coefficient around the rotor of a transonic turbine stage. Both time-resolved and time-averaged aspects are addressed. The measurements are performed around the rotor blade at 15%, 50% and 85% span as well as on the rotor tip and the hub platform. Four operating conditions are tested covering two Reynolds numbers and three pressure ratios. The tests are performed in the compression tube turbine test rig CT3 of the von Karman Institute, allowing a correct simulation of the operating conditions encountered in modern aero-engines. The time-averaged Nusselt number distribution shows the strong dependence on both blade Mach number distribution and Reynolds number. The time-resolved heat transfer rate is mostly dictated by the vane trailing edge shock impingement on the rotor boundary layer. The shock passage corresponds to a sudden heat transfer increase. The effects are more pronounced in the leading edge region. The increase of the stage pressure ratio causes a stronger vane trailing edge shock and thus larger heat transfer fluctuations. The influence of the Reynolds number is hardly visible.


Author(s):  
K. K. Botros ◽  
J. Geerligs ◽  
H. Imran ◽  
W. Thompson

The purpose of the ejector device is to capture the gas leakage from a dry-gas seal at low pressure, and re-inject it into the fuel gas line to the gas generator (without the use of compressors or rotating elements), hence providing a means to utilize the gas that would otherwise be vented to atmosphere. Implementation of this device will also have the benefit of reducing greenhouse gas emissions to the atmosphere. The primary challenge to achieve the above goal lies in the fact that the leakage gas pressure is in the range of 70–340 kPag, while the minimum pressure required upstream of the fuel gas regulator is in the range of 2400–3300 kPag. The device consists of a two-stage supersonic ejector. The first stage is highly supersonic (nozzle exit Mach number ≃ 2.54), while the second stage is moderately supersonic (nozzle exit Mach number ≃ 1.72). Several tests where conducted on various configurations of the two stages on natural gas in order to arrive at the optimum design and operating parameters. The optimum design gave an expansion pressure ratio (motive/suction) of the order of 14.0 and compression pressure ratio (discharge/suction) of around 8.1. These ratios would meet the requirement of the minimum suction and discharge pressure mentioned above. This paper presents the optimum configuration arrived at after several iterations of different geometries of the supersonic nozzles, particularly for the first stage ejector, and presents the performance test results of the integrated system. The results indicate that the device would meet the requirements of capturing the low pressure, low flow dry gas seal leakage and re-inject it into the fuel gas stream with an overall ejector efficiency (based on thermodynamic availability) of 80%.


Author(s):  
Lamyaa A. El-Gabry

A computational study has been performed to predict the heat transfer distribution on the blade tip surface for a representative gas turbine first stage blade. Computational fluid dynamics (CFD) predictions of blade tip heat transfer are compared with test measurements taken in a linear cascade, when available. The blade geometry has an inlet Mach number of 0.3 and an exit Mach number of 0.75, pressure ratio of 1.5, exit Reynolds number based on axial chord of 2.57×106, and total turning of 110 deg. Three blade tip configurations were considered; a flat tip, a full perimeter squealer, and an offset squealer where the rim is offset to the interior of the tip perimeter. These three tip geometries were modeled at three tip clearances of 1.25%, 2.0%, and 2.75% of the blade span. The tip heat transfer results of the numerical models agree well with data. For the case in which side-by-side comparison with test measurements in the open literature is possible, the magnitude of the heat transfer coefficient in the “sweet spot” matches data exactly and shows 20–50% better agreement with experiment than prior CFD predictions of this same case.


2002 ◽  
Vol 124 (4) ◽  
pp. 614-622 ◽  
Author(s):  
F. Didier ◽  
R. De´nos ◽  
T. Arts

This experimental investigation reports the convective heat transfer coefficient around the rotor of a transonic turbine stage. Both time-resolved and time-averaged aspects are addressed. The measurements are performed around the rotor blade at 15, 50, and 85% span as well as on the rotor tip and the hub platform. Four operating conditions are tested covering two Reynolds numbers and three pressure ratios. The tests are performed in the compression tube turbine test rig CT3 of the von Karman Institute, allowing a correct simulation of the operating conditions encountered in modern aero-engines. The time-averaged Nusselt number distribution shows the strong dependence on both blade Mach number distribution and Reynolds number. The time-resolved heat transfer rate is mostly dictated by the vane trailing edge shock impingement on the rotor boundary layer. The shock passage corresponds to a sudden heat transfer increase. The effects are more pronounced in the leading edge region. The increase of the stage pressure ratio causes a stronger vane trailing edge shock and thus larger heat transfer fluctuations. The influence of the Reynolds number is hardly visible.


2003 ◽  
Vol 125 (3) ◽  
pp. 513-520 ◽  
Author(s):  
Kam S. Chana ◽  
Terry V. Jones

Detailed experimental investigations have been performed to measure the heat transfer and static pressure distributions on the rotor tip and rotor casing of a gas turbine stage with a shroudless rotor blade. The turbine stage was a modern high pressure Rolls-Royce aero-engine design with stage pressure ratio of 3.2 and nozzle guide vane (ngv) Reynolds number of 2.54E6. Measurements have been taken with and without inlet temperature distortion to the stage. The measurements were taken in the QinetiQ Isentropic Light Piston Facility and aerodynamic and heat transfer measurements are presented from the rotor tip and casing region. A simple two-dimensional model is presented to estimate the heat transfer rate to the rotor tip and casing region as a function of Reynolds number along the gap.


Author(s):  
Dun Lin ◽  
Xinrong Su ◽  
Xin Yuan

The flow in a generic, high-pressure turbine vane was simulated using an in-house DDES code. Two different operating conditions were simulated with one leading to a shock wave while the other does not. One case was used to validate the capability of the DDES method to capture shock waves and other flow structures using an inlet Reynolds number of 271,000 and an exit Mach number of 0.840. The test conditions for the other case were an inlet Reynolds number of 265,000 and an exit Mach number of 0.927, which is representative of a transonic, high pressure turbine vane which was used to further investigate the flow field. The DDES simulations from the first case are compared with published experimental data, RANS simulations and LES simulations. Then, DDES results for two cases with adiabatic and isothermal boundary conditions are compared. The numerical simulations with the isothermal boundary condition are further used to study the flow phenomena with wake vortices, shock waves, pressure waves, wake-shock interactions, and wake-pressure wave interactions. The effects of the pressure waves on the vane heat transfer are also analyzed.


Author(s):  
M. G. Dunn ◽  
C. W. Haldeman

The results of an experimental research program determining the blade platform heat-flux level and the influence of blade tip recess on the tip region heat transfer for a full-scale rotating turbine stage at transonic vane exit conditions are described. The turbine used for these measurements was the Allison VBI stage operating in the closed vane position (vane exit Mach number _ 1.1). The stage was operated at the design flow function, total to static pressure ratio, and corrected speed. Measurements were obtained at several locations on the platform and in the blade tip region. The tip region consists of the bottom of the recess, the lip region (on both the pressure and suction surface sides of the recess), and the 90% span location on the blade suction surface. Measurements were obtained for three vane/blade spacings; 20%, 40%, and 60% of vane axial chord and for a single value of the tip gap (the distance between the top of the lip and the stationary shroud) equal to 0.0012-m (0.046-in) or 2.27% of blade height.


Sign in / Sign up

Export Citation Format

Share Document