Conjugate Flow and Heat Transfer Investigation of a Turbo Charger: Part I — Numerical Results

Author(s):  
Dieter Bohn ◽  
Tom Heuer ◽  
Karsten Kusterer

In this paper a three-dimensional conjugate calculation has been performed for a passenger car turbo charger. The scope of this work is to investigate the heat fluxes in the radial compressor which can be strongly influenced by the hot turbine. As a result of this, the compressor efficiency may deteriorate. Consequently, the heat fluxes have to be taken into account for the determination of the efficiency. To overcome this problem a complex three-dimensional model has been developed. It contains the compressor, the oil cooled center housing, and the turbine. 12 operating points have been numerically simulated composed of three different turbine inlet temperatures and four different mass flows. The boundary conditions for the flow and for the outer casing were derived from experimental test data (part II of the paper). Resulting from these conjugate calculations various one-dimensional calculation specifications have been developed. They describe the heat transfer phenomena inside the compressor with the help of a Nusselt number which is a function of an artificial Reynolds number and the turbine inlet temperature.

2005 ◽  
Vol 127 (3) ◽  
pp. 663-669 ◽  
Author(s):  
Dieter Bohn ◽  
Tom Heuer ◽  
Karsten Kusterer

In this paper a three-dimensional conjugate calculation has been performed for a passenger car turbo charger. The scope of this work is to investigate the heat fluxes in the radial compressor, which can be strongly influenced by the hot turbine. As a result of this, the compressor efficiency may deteriorate. Consequently, the heat fluxes have to be taken into account for the determination of the efficiency. To overcome this problem a complex three-dimensional model has been developed. It contains the compressor, the oil cooled center housing, and the turbine. Twelve operating points have been numerically simulated composed of three different turbine inlet temperatures and four different mass flows. The boundary conditions for the flow and for the outer casing were derived from experimental test data (Bohn et al.). Resulting from these conjugate calculations various one-dimensional calculation specifications have been developed. They describe the heat transfer phenomena inside the compressor with the help of a Nusselt number, which is a function of an artificial Reynolds number and the turbine inlet temperature.


Author(s):  
Imran Qureshi ◽  
Andy D. Smith ◽  
Kam S. Chana ◽  
Thomas Povey

Detailed experimental measurements have been performed to understand the effects of turbine inlet temperature distortion (hot-streaks) on the heat transfer and aerodynamic characteristics of a full-scale unshrouded high pressure turbine stage at flow conditions that are representative of those found in a modern gas turbine engine. To investigate hot-streak migration, the experimental measurements are complemented by three-dimensional steady and unsteady CFD simulations of the turbine stage. This paper presents the time-averaged measurements and computational predictions of rotor blade surface and rotor casing heat transfer. Experimental measurements obtained with and without inlet temperature distortion are compared. Time-mean experimental measurements of rotor casing static pressure are also presented. CFD simulations have been conducted using the Rolls-Royce code Hydra, and are compared to the experimental results. The test turbine was the unshrouded MT1 turbine, installed in the Turbine Test Facility (previously called Isentropic Light Piston Facility) at QinetiQ, Farnborough UK. This is a short duration transonic facility, which simulates engine representative M, Re, Tu, N/T and Tg /Tw at the turbine inlet. The facility has recently been upgraded to incorporate an advanced second-generation temperature distortion generator, capable of simulating well-defined, aggressive temperature distortion both in the radial and circumferential directions, at the turbine inlet.


Author(s):  
Dieter Bohn ◽  
Norbert Moritz ◽  
Michael Wolff

In this paper the results of experimental investigations are presented that were performed at the institute’s turbo charger test stand to determine the heat flux between the turbine and the compressor of a passenger car turbo charger. A parametric study has been performed varying the turbine inlet temperature and the mass flow rate. The aim of the analysis is to provide a relation of the Reynolds number at the compressor inlet and the heat flux from the turbine to the compressor with the turbine inlet temperature as the parameter. Thereto, the analysis of the local heat fluxes is necessary which is performed in a numerical conjugate heat transfer and flow analysis which is presented in part I of the paper. Beyond the measurements necessary to determine the operating point of compressor and turbine, the surface temperature of the casings were measured by resistance thermometers at different positions and by thermography. All measurement results were used as boundary conditions for the numerical simulation, i.e. the inlet and outlet flow conditions for compressor and turbine, the rotational speed, the oil temperatures and the temperature distribution on the outer casing surface of the turbo charger. The experimental results show that the total heat flux from turbine to compressor is mainly influenced by the turbine inlet temperature. The increase of the mass flow rate leads to a higher pressure ratio in the compressor so that the compressor casing temperature is increased. Due to the turbo charger’s geometry heat radiation has a small influence on the total heat flux.


Author(s):  
R. Burke ◽  
C. Copeland ◽  
T. Duda ◽  
M. A. Reyes-Belmonte

One dimensional wave-action engine models have become an essential tool within engine development including stages of component selection, understanding system interactions and control strategy development. Simple turbocharger models are seen as a weak link in the accuracy of these simulation tools and advanced models have been proposed to account for phenomena including heat transfer. In order to run within a full engine code, these models are necessarily simple in structure yet are required to describe a highly complex 3D problem. This paper aims to assess the validity of one of the key assumptions in simple heat transfer models, namely, that the heat transfer between the compressor casing and intake air occurs only after the compression process. Initially a sensitivity study was conducted on a simple lumped capacity thermal model of a turbocharger. A new partition parameter was introduced αA, which divides the internal wetted area of the compressor housing into pre and post compression. The sensitivity of heat fluxes to αA was quantified with respect to the sensitivity to turbine inlet temperature (TIT). At low speeds, the TIT was the dominant effect on compressor efficiency whereas at high speed αA had a similar influence to TIT. However, modelling of the conduction within the compressor housing using an additional thermal resistance caused changes in heat flows of less than 10%. Three dimensional CFD analysis was undertaken using a number of cases approximating different values of αA. It was seen that when considering a case similar to αA=0, meaning that heat transfer on the compressor side is considered to occur only after the compression process, significant temperature could build up in the impeller area of the compressor housing, indicating the importance of the pre-compression heat path. The 3D simulation was used to estimate a realistic value for αA which was suggested to be between 0.15 and 0.3. Using a value of this magnitude in the lumped capacitance model showed that at low speed there would be less than 1% point effect on apparent efficiency which would be negligible compared to the 8% point seen as a result of TIT. In contrast, at high speeds, the impact of αA was similar to that of TIT, both leading to approximately 1% point apparent efficiency error.


Author(s):  
R. D. Burke ◽  
C. D. Copeland ◽  
T. Duda ◽  
M. A. Rayes-Belmote

One-dimensional wave-action engine models have become an essential tool within engine development including stages of component selection, understanding system interactions, and control strategy development. Simple turbocharger models are seen as a weak link in the accuracy of these simulation tools, and advanced models have been proposed to account for phenomena including heat transfer. In order to run within a full engine code, these models are necessarily simple in structure yet are required to describe a highly complex 3D problem. This paper aims to assess the validity of one of the key assumptions in simple heat transfer models, namely, that the heat transfer between the compressor casing and intake air occurs only after the compression process. Initially, a sensitivity study was conducted on a simple lumped capacity thermal model of a turbocharger. A new partition parameter was introduced αA, which divides the internal wetted area of the compressor housing into pre- and postcompression. The sensitivity of heat fluxes to αA was quantified with respect to the sensitivity to turbine inlet temperature (TIT). At low speeds, the TIT was the dominant effect on compressor efficiency, whereas at high speed αA had a similar influence to TIT. However, modeling of the conduction within the compressor housing using an additional thermal resistance caused changes in heat flows of less than 10%. Three-dimensional computational fluid dynamics (CFD) analysis was undertaken using a number of cases approximating different values of αA. It was seen that when considering a case similar to αA = 0, meaning that heat transfer on the compressor side is considered to occur only after the compression process, significant temperature could build up in the impeller area of the compressor housing, indicating the importance of the precompression heat path. The 3D simulation was used to estimate a realistic value for αA which was suggested to be between 0.15 and 0.3. Using a value of this magnitude in the lumped capacitance model showed that at low speed there would be less than 1% point effect on apparent efficiency which would be negligible compared to the 8% point seen as a result of TIT. In contrast, at high speeds, the impact of αA was similar to that of TIT, both leading to approximately 1% point apparent efficiency error.


Author(s):  
Shian Li ◽  
Gongnan Xie ◽  
Weihong Zhang ◽  
Bengt Sundén

The inlet temperature of gas turbine engine is continuously increased to achieve higher thermal efficiency and power output. To prevent from the temperature exceeding the melting point of the blade material, ribs are commonly used in the mid-section of internal blade to augment the heat transfer from blade wall to the coolant. In this study, turbulent flow and heat transfer of a rectangular cooling passage with continuous or truncated 45-deg V-shaped ribs on opposite walls have been investigated numerically. The inlet Reynolds numbers are ranging from 12,000 to 60,000 and the low-Re k-ε model is selected for the turbulent computations. The complex three-dimensional fluid flow in the internal coolant passages and the corresponding heat transfer over the side-walls and rib-walls are presented and the thermal performances of the ribbed passages are compared as well. It is shown that the passage with truncated V-shaped ribs on opposite walls is very effective in improving the heat transfer performance with a low pressure loss, and thus could be suggested to be applied to gas turbine blade internal cooling.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Imran Qureshi ◽  
Andy D. Smith ◽  
Kam S. Chana ◽  
Thomas Povey

Detailed experimental measurements have been performed to understand the effects of turbine inlet temperature distortion (hot-streaks) on the heat transfer and aerodynamic characteristics of a full-scale unshrouded high pressure turbine stage at flow conditions that are representative of those found in a modern gas turbine engine. To investigate hot-streak migration, the experimental measurements are complemented by three-dimensional steady and unsteady CFD simulations of the turbine stage. This paper presents the time-averaged measurements and computational predictions of rotor blade surface and rotor casing heat transfer. Experimental measurements obtained with and without inlet temperature distortion are compared. Time-mean experimental measurements of rotor casing static pressure are also presented. CFD simulations have been conducted using the Rolls-Royce code HYDRA and are compared with the experimental results. The test turbine was the unshrouded MT1 turbine, installed in the Turbine Test Facility (previously called Isentropic Light Piston Facility) at QinetiQ, Farnborough, UK. This is a short duration transonic facility, which simulates engine-representative M, Re, Tu, N/T, and Tg/Tw to the turbine inlet. The facility has recently been upgraded to incorporate an advanced second-generation temperature distortion generator, capable of simulating well-defined, aggressive temperature distortion both in the radial and circumferential directions, at the turbine inlet.


2014 ◽  
Vol 721 ◽  
pp. 174-177 ◽  
Author(s):  
Hui Lai

This paper presents a heat exchanger of louver baffle, the establishment of a three-dimensional model, research by numerical simulation of flow and heat transfer performance of the heat exchanger baffles different louver angle, and analyzes its local temperature, and evaluated for its overall performance. The results show that louver baffle heat exchanger avoids the existence of traditional segmental baffle heat exchanger problem after baffle local flow dead zone; compared with conventional segmental baffle heat exchanger, louver baffle heat exchanger greatly reduces the heat exchanger shell side pressure drop; louver baffle heat exchanger in the unit pressure drop coefficients are higher than the segmental baffle heat exchanger, and with the baffle plate angle increases, with significant energy savings.


Sign in / Sign up

Export Citation Format

Share Document