Resistance Reduction in Pulsating Turbulent Pipe Flows

Author(s):  
Marcello Manna ◽  
Andrea Vacca

The paper describes the effects of a forced harmonic oscillations of fixed frequency and amplitudes in the range Λ = Um/Ub = 1 ÷ 11 on the characteristics of a turbulent pipe flow with a bulk Reynolds number of 5900. The resulting Stokes layer δ is a fraction of the pipe radius (χ = R/δ = 53) so that the vorticity associated to the oscillating motion is generated in a small near wall region. The analysis is carried out processing a set of statistically independent samples obtained from wall resolved Large Eddy Simulations; time and space averaged global quantities, extracted for the sake of comparison with recent experimental data, confirm the presence of a non negligible drag reduction phenomenon. Phase averaged profiles of the Reynolds stress tensor components provide valuable material for the comprehension of the effects of the time varying mean shear upon the near wall turbulent flow structures. The large scale of motion are directly computed through numerical integration of the space filtered three dimensional Navier-Stokes equations with a spectrally accurate code; the subgrid scale terms are parametrized with a dynamic procedure.

2005 ◽  
Vol 127 (2) ◽  
pp. 410-417 ◽  
Author(s):  
Marcello Manna ◽  
Andrea Vacca

The paper describes the effects of forced harmonic oscillations of fixed frequency and amplitudes in the range Λ=Um/Ub=1-11 on the characteristics of a turbulent pipe flow with a bulk Reynolds number of 5900. The resulting Stokes layer δ is a fraction of the pipe radius χ=R/δ=53 so that the vorticity associated to the oscillating motion is generated in a small near wall region. The analysis is carried out processing a set of statistically independent samples obtained from wall-resolved large eddy simulations (LES); time and space averaged global quantities, extracted for the sake of comparison with recent experimental data, confirm the presence of a non-negligible drag reduction phenomenon. Phase averaged profiles of the Reynolds stress tensor components provide valuable material for the comprehension of the effects of the time varying mean shear upon the near wall turbulent flow structures. The large scales of motion are directly computed through numerical integration of the space filtered three-dimensional Navier-Stokes equations with a spectrally accurate code; the subgrid scale terms are parametrized with a dynamic procedure.


2021 ◽  
Vol 36 (2) ◽  
pp. 101-115
Author(s):  
Roman S. Solomatin ◽  
Ilya V. Semenov

Abstract Turbulent mixing, ignition, and flame stabilization in the non-premixed supersonic hydrogen-air flow is numerically modelled in a near-wall region. Mixing algorithm based on the turbulence approach SARANS (Reynolds Averaged Navier–Stokes equations closed with Spalart–Allmaras turbulence model) with a diffusion model and a detailed kinetic model for hydrogen-air chemical reactions are employed. The system of governing equations that consists of basic conservation laws and the turbulence model equation is solved in a coupled manner with the LU–SGS–GMRES method. The model is applied to simulate the process of hydrogen injection into a M = 2.44 air flow with their subsequent mixing, ignition, and combustion in the Burrows– Kurkov chamber. The results are compared to available experimental and reference computational data. All calculations are carried out on the ‘MVS-10P’ JSCC RAS supercomputer cluster.


2016 ◽  
Vol 799 ◽  
pp. 246-264 ◽  
Author(s):  
K. Seshasayanan ◽  
A. Alexakis

We study the linear stage of the dynamo instability of a turbulent two-dimensional flow with three components $(u(x,y,t),v(x,y,t),w(x,y,t))$ that is sometimes referred to as a 2.5-dimensional (2.5-D) flow. The flow evolves based on the two-dimensional Navier–Stokes equations in the presence of a large-scale drag force that leads to the steady state of a turbulent inverse cascade. These flows provide an approximation to very fast rotating flows often observed in nature. The low dimensionality of the system allows for the realization of a large number of numerical simulations and thus the investigation of a wide range of fluid Reynolds numbers $Re$, magnetic Reynolds numbers $Rm$ and forcing length scales. This allows for the examination of dynamo properties at different limits that cannot be achieved with three-dimensional simulations. We examine dynamos for both large and small magnetic Prandtl-number turbulent flows $Pm=Rm/Re$, close to and away from the dynamo onset, as well as dynamos in the presence of scale separation. In particular, we determine the properties of the dynamo onset as a function of $Re$ and the asymptotic behaviour in the large $Rm$ limit. We are thus able to give a complete description of the dynamo properties of these turbulent 2.5-D flows.


1995 ◽  
Vol 288 ◽  
pp. 249-264 ◽  
Author(s):  
A. Wirth ◽  
S. Gama ◽  
U. Frisch

Detailed theoretical and numerical results are presented for the eddy viscosity of three-dimensional forced spatially periodic incompressible flow.As shown by Dubrulle & Frisch (1991), the eddy viscosity, which is in general a fourth-order anisotropic tensor, is expressible in terms of the solution of auxiliary problems. These are, essentially, three-dimensional linearized Navier–Stokes equations which must be solved numerically.The dynamics of weak large-scale perturbations of wavevector k is determined by the eigenvalues – called here ‘eddy viscosities’ – of a two by two matrix, obtained by contracting the eddy viscosity tensor with two k-vectors and projecting onto the plane transverse to k to ensure incompressibility. As a consequence, eddy viscosities in three dimensions, but not in two, can become complex. It is shown that this is ruled out for flow with cubic symmetry, the eddy viscosities of which may, however, become negative.An instance is the equilateral ABC-flow (A = B = C = 1). When the wavevector k is in any of the three coordinate planes, at least one of the eddy viscosities becomes negative for R = 1/v > Rc [bsime ] 1.92. This leads to a large-scale instability occurring for a value of the Reynolds number about seven times smaller than instabilities having the same spatial periodicity as the basic flow.


1990 ◽  
Vol 43 (5S) ◽  
pp. S245-S245
Author(s):  
Thomas J. Hanratty ◽  
K. Kontamaris

Observations of turbulent flow close to a wall reveal turbulent eddies which are elongated in the flow direction. This has motivated the use of a slender body assumption to simplify the Navier Stokes equations. Derivatives in the flow-direction are neglected so that three velocity components are calculated in a plane. The application of this 2 1/2D model to the viscous wall region (y+ < 40) shows that the turbulent velocity field can be represented by interaction of two eddies with spanwise wavelengths of 100 and 400 wall units. This model has been used to investigate the effect of favorable pressure gradients on a turbulent boundary-layer and to explore what determines the size of the stress producing eddies close to the wall. The accuracy of the basic physical assumptions are explored by examining resulte from a computer simulation of the three-dimensional time dependent turbulent flow in a channel. Some possible improvements are discussed, which make use of the observation that spatial derivatives in the flow direction can be related to time derivatives by using a convection velocity.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Sign in / Sign up

Export Citation Format

Share Document