Forced Low-Frequency Spray Characteristics of a Generic Airblast Swirl Diffusion Burner

Author(s):  
J. Eckstein ◽  
E. Freitag ◽  
C. Hirsch ◽  
T. Sattelmayer ◽  
R. von der Bank ◽  
...  

The low frequency response of the spray from a generic air-blast diffusion burner with a design typical of an engine system has been investigated as part of an experimental study to describe the combustion oscillations of aero engine combustors called rumble. The atomization process was separated from the complex instability mechanism of rumble by using sinusoidal forcing of the air mass flow rate without combustion. Pressure drop across the burner and the velocity on the burner exit were found to follow the steady Bernoulli equation. Phase-locked PIV measurements of the forced velocity field of the burner show quasi-steady behavior of the air flow field. The phase-locked spray characteristics were measured for different fuel flow rates. Here again quasi-steady behavior of the atomization process was observed. With combustion, the phase-locked Mie-scattering intensity of the spray cone was found to follow the spray behavior measured in the non-combusting tests. These findings lead to the conclusion that the unsteady droplet SMD mean and amplitude of the air-blast atomizer can be calculated using the steady state atomization correlations with the unsteady burner air velocity.

2005 ◽  
Vol 127 (2) ◽  
pp. 301-306 ◽  
Author(s):  
J. Eckstein ◽  
E. Freitag ◽  
C. Hirsch ◽  
T. Sattelmayer ◽  
R. von der Bank ◽  
...  

The low-frequency response of the spray from a generic airblast diffusion burner with a design typical of an engine system has been investigated as part of an experimental study to describe the combustion oscillations of aeroengine combustors called rumble. The atomization process was separated from the complex instability mechanism of rumble by using sinusoidal forcing of the air mass flow rate without combustion. Pressure drop across the burner and the velocity on the burner exit were found to follow the steady Bernoulli equation. Phase-locked particle image velocimetry measurements of the forced velocity field of the burner show quasisteady behavior of the air flow field. The phase-locked spray characteristics were measured for different fuel flow rates. Here again quasi-steady behavior of the atomization process was observed. With combustion, the phase-locked Mie-scattering intensity of the spray cone was found to follow the spray behavior measured in the noncombusting tests. These findings lead to the conclusion that the unsteady droplet Sauter mean diameter mean and amplitude of the airblast atomizer can be calculated using the steady-state atomization correlations with the unsteady burner air velocity.


2020 ◽  
pp. 146808742091471
Author(s):  
Feng Li ◽  
Chia-fon Lee ◽  
Ziman Wang ◽  
Yiqiang Pei ◽  
Guoxiang Lu

Ducted fuel injection spray is a new technology for reducing soot formation in heavy-duty diesel engines. In this work, the ducted fuel injection spray characteristics with different duct inner diameters and different standoff distances were investigated and compared with free spray. Duct inner diameter ranged from 1.5 to 4 mm, and standoff distance varied between 0.9 and 4.9 mm. Mie-scattering optical technique was used to characterize spray characteristics under various injection pressures in a constant-volume spray chamber. Ambient gas pressure of up to 6 MPa when spraying. The results showed that ducted fuel injection spray with smaller duct has better spray diffusion compared to those of ducted fuel injection sprays with larger ducts and free spray from the perspectives of spray tip penetration, spray cone angle and spray area. Increasing standoff distance could increase spray velocity. Ducted fuel injection spray with smaller duct formed a mushroom-shaped head and large-scale vortex flow close to the duct outlet. All the advantages of ducted fuel injection spray with smaller duct are interpreted as evidence of improving fuel–gas mixing quality significantly.


Author(s):  
Mohamed Soltan ◽  
Buthaina Al Abdulla ◽  
AlReem Al Dosari ◽  
Kumaran Kannaiyan ◽  
Reza Sadr

Dispersion of nanoparticles in pure fuels alters their key fuel physical properties, which could affect their atomization process, and in turn, their combustion and emission characteristics in a combustion chamber. Therefore, it is essential to have a thorough knowledge of the atomization characteristics of nanofuels (nanoparticles dispersed in pure fuels) to better understand their latter processes. This serves as the motivation for the present work, which attempts to gain a good understanding of the atomization process of the alternative, gas-to-liquid (GTL), jet fuel based nanofuels. The macroscopic spray characteristics such as spray cone angle, liquid sheet breakup, and liquid sheet velocity are determined by employing shadowgraph imaging technique. The effect of nanoparticles weight concentration and ambient pressures on the spray characteristics are investigated in a high pressure-high temperature constant volume spray rig. To this end, a pressure swirl nozzle with an exit diameter of 0.8 mm is used to atomize the fuels. The macroscopic spray results demonstrate that the nanoparticles dispersion at low concentrations affect the near nozzle region. The spray liquid sheet breakup distance is reduced by the presence of nanoparticle due to the early onset of disruption in the liquid sheet. Consequently, the liquid sheet velocity in that spray region is higher for nanofuels when compared to that of pure fuels. Also, the ambient pressure has a significant effect on the spray features as reported in the literature.


1989 ◽  
Vol 111 (1) ◽  
pp. 63-69 ◽  
Author(s):  
X. F. Dai ◽  
A. H. Lefebvre ◽  
J. Rollbuhler

The spray characteristics of a spill-return airblast atomizer are examined using water as the working fluid. Measurements of mean drop size, drop size distribution, spray cone angle, and circumferential liquid distribution are carried out over wide ranges of liquid injection pressures and atomizing air velocities. Generally it is found that an increase in nozzle bypass ratio worsens the atomization quality and widens the spray cone angle. Increase in airblast air velocity may improve or impair atomization quality depending on whether it increases or decreases the relative velocity between the liquid and the surrounding air. Airblast air can also be used to modify the change in spray cone angle that normally accompanies a change in bypass ratio.


Author(s):  
Shenghao Yu ◽  
Bifeng Yin ◽  
Shuai Wen ◽  
Xifeng Li ◽  
Hekun Jia ◽  
...  

The early stage spray characteristics have a great impact on the secondary atomization progress, and thus affectthe engine combustion and emission performances. The experimental investigation of the early stage spray behaviors with biodiesel and diesel was carried out by employing a laser-based Mie-scattering method. The results show that the spray tip penetration for biodiesel is higher than that for diesel at the early stage spray under the same injection pressure. Moreover, the early stage spray tip penetration can be longer under high injection pressures for two fuels. Besides, the early stage spray cone angle for biodiesel is narrower than that for diesel, and the spray cone angle is especially higher than biodiesel by 25.8% after start of injection time of 0.01ms. Furthermore, under the same injection condition, the difference of early stage spray area between diesel and biodiesel is not obvious, while the spray volume for biodiesel is larger than that for diesel, and also the sprayvolume can be enlarged by increasing injection pressure for both fuels.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4651


2021 ◽  
Author(s):  
Thomas Christou ◽  
Björn Stelzner ◽  
Nikolaos Zarzalis

Abstract In order to meet the higher requirements for clean combustion technology in aircraft engine applications and thus reduce harmful emissions, especially nitrogen oxide emissions, the major jet engine manufacturers are developing lean premixed prevaporized (LPP) combustors that operate at very high pressure. In this context, thermoacoustic instabilities may occur within the combustion chamber. The unsteady heat released by the flame generates pressure waves, which are coupled to the inlet air velocity by a feedback loop. This loop amplifies the instabilities of the inlet air velocity, which in turn influences the atomization process. Since the atomization process at the airblast atomizers of most jet engine combustors determines critical operating characteristics such as air-to-fuel ratio (AFR), flame stability, or NOx emissions, predicting the performance of this process under unsteady conditions has a significant value. The present experimental study focuses on the influence of oscillating airflows on the spray characteristics at the airblast atomization process. The experimental setup was based on a two-dimensional prefilmer where a water film flow was introduced on one surface. The airflow was excited by a siren, whereby an excitation frequency near 94 Hz was investigated. The airflow oscillation under this excitation frequency was characterized using a Constant Temperature Anemometer (CTA), while the generated spray was investigated with a Phase Doppler Anemometry (PDA) system. The spray was investigated in a variety of positions along the radial axis, providing spatial information, apart from temporal. The characterization of the spray via PDA includes a two-component droplet velocity detection and diameter measurement, while the spray mass flux for each measured position was also calculated. The acquired data were phase averaged via an in-house developed processing algorithm, while through a statistical analysis the confidence intervals of the calculations were included. The excitation frequency strongly influenced all spray characteristics, namely, the Sauter Mean Diameter (SMD), the droplet velocities, the mass flux, as well as the local air-to-liquid ratio (ALR). Depending on the phase angle, the size distribution of the spray changes, explaining the observed oscillating behavior of the spray characteristics.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tao Zhang ◽  
Bo Dong ◽  
Xun Zhou ◽  
Linan Guan ◽  
Weizhong Li ◽  
...  

Partial replacement of kerosene by ethanol in a gas turbine is regarded as a good way to improve the spray quality and reduce the fossil energy consumption. The present work is aimed at studying the spray characteristics of kerosene-ethanol blends discharging from a pressure-swirl nozzle. The spray cone angle, discharge coefficient, breakup length, and velocity distribution are obtained by particle image velocimetry, while droplet size is acquired by particle/droplet imaging analysis. Kerosene, E10 (10% ethanol, 90% kerosene), E20 (20% ethanol, 80% kerosene), and E30 (30% ethanol, 70% kerosene) have been considered under the injection pressure of 0.1–1 MPa. The results show that as injection pressure is increased, the discharge coefficient and breakup length decrease, while the spray cone angle, drop size, and spray velocity increase. Meanwhile, the drop size decreases and the spray velocity increases with ethanol concentration when the injection pressure is lower than 0.8 MPa. However, the spray characteristics are not affected obviously by the ethanol concentration when the injection pressure exceeds 0.8 MPa. A relation to breakup length for kerosene-ethanol blends is obtained. The findings demonstrate that the adding of ethanol into kerosene can promote atomization performance.


2021 ◽  
Author(s):  
Kiran Kumar ◽  
Vasudev Chaudhari ◽  
Srikrishna Sahu ◽  
Ravindra G. Devi

Abstract Fouling in compressor blades due to dirt deposition is a major issue in land-based gas turbines as it impedes the compressor performance and degrades the overall engine efficiency. The online water washing approach is an effective alternate for early-stage compressor blade cleaning and to optimize the time span between offline washing and peak availability. In such case, typically a series of flat-fan nozzles are used at the engine bell mouth to inject water sprays into the inflowing air. However, optimizing the injector operating conditions is not a straightforward task mainly due to the tradeoff between blade cleaning effectiveness and material erosion. In this context, the knowledge on spray characteristics prior to blade impingement play a vital role, and the experimental spray characterization is crucial not only to understand the basic process but also to validate numerical models and simulations. The present paper investigates spray characteristics in a single flat-fan nozzle operated in the presence of a coflowing air within a wind-tunnel. A parametric investigation is carried out using different air flow velocity in the tunnel and inlet water temperature, while the liquid flow rate was maintained constant. The spray cone angle and liquid breakup length are measured using back-lit photography. The high-speed shadowgraphy technique is used for capturing the droplet images downstream of the injector exit. The images are processed following depth-of-filed correction to measure droplet size distribution. Droplet velocity is measured by the particle tracking velocimetry (PTV) technique. As both droplet size and velocity are known, the cross-stream evolution of local droplet mass and momentum flux are obtained at different axial locations which form the basis for studying the effectiveness of the blade cleaning process due to droplet impingement on a coupon coated with foulant of known mass.


Sign in / Sign up

Export Citation Format

Share Document