Impacts of duct inner diameter and standoff distance on macroscopic spray characteristics of ducted fuel injection under non-vaporizing conditions

2020 ◽  
pp. 146808742091471
Author(s):  
Feng Li ◽  
Chia-fon Lee ◽  
Ziman Wang ◽  
Yiqiang Pei ◽  
Guoxiang Lu

Ducted fuel injection spray is a new technology for reducing soot formation in heavy-duty diesel engines. In this work, the ducted fuel injection spray characteristics with different duct inner diameters and different standoff distances were investigated and compared with free spray. Duct inner diameter ranged from 1.5 to 4 mm, and standoff distance varied between 0.9 and 4.9 mm. Mie-scattering optical technique was used to characterize spray characteristics under various injection pressures in a constant-volume spray chamber. Ambient gas pressure of up to 6 MPa when spraying. The results showed that ducted fuel injection spray with smaller duct has better spray diffusion compared to those of ducted fuel injection sprays with larger ducts and free spray from the perspectives of spray tip penetration, spray cone angle and spray area. Increasing standoff distance could increase spray velocity. Ducted fuel injection spray with smaller duct formed a mushroom-shaped head and large-scale vortex flow close to the duct outlet. All the advantages of ducted fuel injection spray with smaller duct are interpreted as evidence of improving fuel–gas mixing quality significantly.

Author(s):  
Shenghao Yu ◽  
Bifeng Yin ◽  
Shuai Wen ◽  
Xifeng Li ◽  
Hekun Jia ◽  
...  

The early stage spray characteristics have a great impact on the secondary atomization progress, and thus affectthe engine combustion and emission performances. The experimental investigation of the early stage spray behaviors with biodiesel and diesel was carried out by employing a laser-based Mie-scattering method. The results show that the spray tip penetration for biodiesel is higher than that for diesel at the early stage spray under the same injection pressure. Moreover, the early stage spray tip penetration can be longer under high injection pressures for two fuels. Besides, the early stage spray cone angle for biodiesel is narrower than that for diesel, and the spray cone angle is especially higher than biodiesel by 25.8% after start of injection time of 0.01ms. Furthermore, under the same injection condition, the difference of early stage spray area between diesel and biodiesel is not obvious, while the spray volume for biodiesel is larger than that for diesel, and also the sprayvolume can be enlarged by increasing injection pressure for both fuels.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4651


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tao Zhang ◽  
Bo Dong ◽  
Xun Zhou ◽  
Linan Guan ◽  
Weizhong Li ◽  
...  

Partial replacement of kerosene by ethanol in a gas turbine is regarded as a good way to improve the spray quality and reduce the fossil energy consumption. The present work is aimed at studying the spray characteristics of kerosene-ethanol blends discharging from a pressure-swirl nozzle. The spray cone angle, discharge coefficient, breakup length, and velocity distribution are obtained by particle image velocimetry, while droplet size is acquired by particle/droplet imaging analysis. Kerosene, E10 (10% ethanol, 90% kerosene), E20 (20% ethanol, 80% kerosene), and E30 (30% ethanol, 70% kerosene) have been considered under the injection pressure of 0.1–1 MPa. The results show that as injection pressure is increased, the discharge coefficient and breakup length decrease, while the spray cone angle, drop size, and spray velocity increase. Meanwhile, the drop size decreases and the spray velocity increases with ethanol concentration when the injection pressure is lower than 0.8 MPa. However, the spray characteristics are not affected obviously by the ethanol concentration when the injection pressure exceeds 0.8 MPa. A relation to breakup length for kerosene-ethanol blends is obtained. The findings demonstrate that the adding of ethanol into kerosene can promote atomization performance.


Author(s):  
Bong Woo Ryu ◽  
Seung Hwan Bang ◽  
Hyun Kyu Suh ◽  
Chang Sik Lee

The purpose of this study is to investigate the effect of injection parameters on the injection and spray characteristics of dimethyl ether and diesel fuel. In order to analyze the injection and spray characteristics of dimethyl ether and diesel fuel with employing high-pressure common-rail injection system, the injection characteristics such as injection delay, injection duration, and injection rate, spray cone angle and spray tip penetration was investigated by using the injection rate measuring system and the spray visualization system. In this work, the experiments of injection rate and spray visualization are performed at various injection parameters. It was found that injection quantity was decreased with the increase of injection pressure at the same energizing duration and injection pressure In the case of injection characteristics, dimethyl ether showed shorter of injection delay, longer injection duration and lower injected mass flow rate than diesel fuel in accordance with various energizing durations and injection pressures. Also, spray development of dimethyl ether had larger spray cone angle than that of diesel fuel at various injection pressures. Spray tip penetration was almost same development and tendency regardless of injection angles.


2014 ◽  
Vol 984-985 ◽  
pp. 932-937 ◽  
Author(s):  
Palani Raghu ◽  
M. Senthamil Selvan ◽  
K. Pitchandi ◽  
N. Nallusamy

— The spray characteristic of the injected fuel is mainly depends upon fuel injection pressure, temperature, ambient pressure, fuel viscosity and fuel density. An experimental study was conducted to examine the effect of injection pressure on the spray was injected into direct injection (DI) diesel engine in the atmospheric condition. In Diesel engine, the window of 20 mm diameter hole and the transparent quartz glass materials were used for visualizing spray characteristics of combustion chamber at right angle triangle position. The varying Injection pressure of 180 - 240 bar and the engine was hand cranked for conducting the experiments. Spray characteristics for Jatropha oil methyl ester (JOME) and diesel were studied experimentally. Spray tip penetration and spray cone angle were measured in a combustion chamber of Direct Injection diesel engine by employing high speed Digital camera using Mie Scattering Technique and ImageJ software. The study shows the JOME gives longer spray tip penetration and smaller spray cone angle than those of diesel fuels. The Spray breakup region (Reynolds number, Weber number), Injection velocity and Sauter Mean Diameter (SMD) were determined for diesel and JOME. SMD decreases for JOME than diesel and the Injection velocity, Reynolds Number, Weber Number Increases for JOME than diesel.


Author(s):  
Wei Fu ◽  
Lanbo Song ◽  
Tao Liu ◽  
Qizhao Lin

The objective of this paper is to investigate the spray macroscopic characteristics of biodiesel, diethyl carbonate (DEC)-biodiesel blends and diesel fuel based on a common-rail injection system. The spray tip penetration, spray cone angle and the spray projected area were measured through a high-speed photography method. The experimental results reveal that injection pressure and ambient pressure have significant effects on the spray characteristics. Higher injection pressure makes the spray tip penetration increase, while higher back pressure inside the chamber leads to the enlargement of the spray cone angle. The addition of DEC causes the blends fuels to have a shorter penetration and larger spray projected area, which reveals the potential capacity to improve the atomization process compared with biodiesel. The estimation of spray droplet size indicates that DEC30 generates a smaller Sauter mean diameter (SMD) because of its lower surface tension and viscosity. Model predictions were illustrated and compared with current work.


Author(s):  
Raul Payri ◽  
Jaime Gimeno ◽  
Michele Bardi ◽  
Alejandro Plazas

A prototype Diesel common rail direct-acting piezoelectric injector has been used to study the influence of fuel injection rate shaping on spray behavior (liquid phase penetration) under evaporative and non-reacting conditions. This state of the art injector allows a fully flexible control of the nozzle needle, enabling various fuel injection rates typologies under a wide range of test conditions. The tests have been performed employing a novel continuous flow test chamber that allows an accurate control on a wide range of thermodynamic test conditions (up to 1000 K and 15 MPa). The temporal evolution of the spray has been studied recording movies of the injection event with a fast camera (25 kfps) by means of the Mie scattering visualization technique. The analysis of the results showed a strong influence of needle position on the behavior of the liquid length. The needle position controls the effective pressure upstream of the nozzle holes. Higher needle lift is equivalent to higher effective pressures. According to the free-jet theory, the stabilized liquid-length depends mainly on effective diameter, spray cone-angle and fuel/air properties and does not depend on injection velocity. Therefore, higher injection pressures gives slightly lower liquid length due to small change in the spray cone-angle. However, partial needle lifts has an opposite effect: lower effective pressure upstream of the nozzle holes shows a dramatic increase on the spray cone-angle, reducing the liquid length. This behavior could be explained mainly due to the fact that the flow direction upstream of the nozzle holes is affecting the area coefficient, or in other words, the effective diameter of the holes.


Author(s):  
Fengyu Li ◽  
Bolun Yi ◽  
Lanbo Song ◽  
Wei Fu ◽  
Tao Liu ◽  
...  

In this research, three basic macroscopic spray characteristics (spray tip penetration, spray cone angle, and spray area) of long-chain alcohol-biodiesel blends were studied to investigate the differences of macroscopic spray characteristics of long-chain alcohol-biodiesel blends with different mixing ratios and to further investigate the effects of blending long-chain alcohols into biodiesel on the spray characteristics. Two kinds of long-chain alcohols, n-butanol, and n-pentanol, were selected to study effects of difference kinds of long-chain alcohols on macroscopic spray characteristics of long-chain alcohol-biodiesel blends. Results show that with the increase of proportion of n-butanol or n-pentanol in blends, spray tip penetration decreased while spray cone angle and spray area increased; in terms of the effects brought by different long-chain alcohols, n-pentanol-biodiesel blends showed slightly longer spray tip penetration, smaller spray cone angle and smaller spray area compared to n-butanol-biodiesel blends in the same mixing ratios, and the difference trends between those two kinds blends could easily be opposite due to the very similar properties of n-butanol and n-pentanol. Furthermore, a modified spray tip penetration model was proposed based on previous model and showed good agreement with experimental results.


2014 ◽  
Vol 1078 ◽  
pp. 271-275 ◽  
Author(s):  
Yu Qiang Wu ◽  
Qian Wang ◽  
Zhi Sheng Gao ◽  
Zhou Rong Zhang ◽  
Li Ming Dai

Experimental study on macroscopic spray characteristics of a certain type of domestic common rail injectors under the conditions of different injection pressures was carried out through a high-speed digital camera. Furthermore, a fuel dripping phenomenon at the end stage of injection was observed through the high-speed digital camera equipped with a long-distance microscope, and a further analysis of the phenomenon was made. The results show the increase in the injection pressure can evidently enhance spray cone angle and expand the scope of spray field in combustion chamber, which is conducive to air-fuel mixture. The spray cone angle during the development spray shows a double-peak shape. And the long response-time of seating of solenoid valve core that disables the injection cutting off in time is one of factors causing fuel dripping phenomenon.


Author(s):  
Mohamed Soltan ◽  
Buthaina Al Abdulla ◽  
AlReem Al Dosari ◽  
Kumaran Kannaiyan ◽  
Reza Sadr

Dispersion of nanoparticles in pure fuels alters their key fuel physical properties, which could affect their atomization process, and in turn, their combustion and emission characteristics in a combustion chamber. Therefore, it is essential to have a thorough knowledge of the atomization characteristics of nanofuels (nanoparticles dispersed in pure fuels) to better understand their latter processes. This serves as the motivation for the present work, which attempts to gain a good understanding of the atomization process of the alternative, gas-to-liquid (GTL), jet fuel based nanofuels. The macroscopic spray characteristics such as spray cone angle, liquid sheet breakup, and liquid sheet velocity are determined by employing shadowgraph imaging technique. The effect of nanoparticles weight concentration and ambient pressures on the spray characteristics are investigated in a high pressure-high temperature constant volume spray rig. To this end, a pressure swirl nozzle with an exit diameter of 0.8 mm is used to atomize the fuels. The macroscopic spray results demonstrate that the nanoparticles dispersion at low concentrations affect the near nozzle region. The spray liquid sheet breakup distance is reduced by the presence of nanoparticle due to the early onset of disruption in the liquid sheet. Consequently, the liquid sheet velocity in that spray region is higher for nanofuels when compared to that of pure fuels. Also, the ambient pressure has a significant effect on the spray features as reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document