An Application Oriented Gas Turbine Laboratory Experience

Author(s):  
Kenneth W. Van Treuren

The gas turbine industry is experiencing growth in many sectors. An important part of teaching a gas turbine course is exposing students to the practical applications of the gas turbine. This laboratory proposes an opportunity for students to view an operating gas turbine engine in an aircraft propulsion application and to model the engine performance. A Pratt and Whitney PT6A-20 turboprop was run at a local airfield and engine parameters typical of cockpit instrumentation were taken. The students, in teams of two, then modeled the system using the software PARA and PERF in an attempt to match the manufacturer’s specifications. This laboratory required students to research the parameters necessary to model this engine that were not part of the data set provided by the manufacturer. The research and modeling encompassed areas such as technology level, efficiencies, fuel consumption, and performance. The end result was a two-page report containing the students’ calculations comparing the actual performance of the engine with the manufacturer’s specifications. Supporting graphs and figures were included as appendices. The same type laboratory could be adapted for co-generation gas turbines. Over 121 colleges and universities have co-generation facilities on campus and that presents a unique opportunity for the students to observe the operation of a land-based gas turbine used for power generation. A 5 MW TB5000 manufactured by Ruston (Alstom) Gas Engines is available on the Baylor University campus and is highlighted as an example. Potential problems encountered with using the Baylor University gas turbine are discussed which include lack of appropriate engine instrumentation.

Author(s):  
Miles Coppinger ◽  
Graham Cox ◽  
John Hannis ◽  
Nigel Cox

A whole gas-turbine engine model has been developed incorporating all of the key turbomachinery aerothermal relationships. The aim of the model has been to predict trends in gas-turbine performance with a high degree of confidence that they reflect real engine design limitations. Simple cycles, recuperated, inter-cooled, and inter-cooled recuperated cycles can be assessed across a wide of range of operating parameters. The model is spreadsheet-based with additional macro programming. The major part of it is concerned with establishing representative overall turbine characteristics. A non-integer number of stages is determined as a function of technology level inputs. Individual stage geometry features are derived allowing the calculation of the coolant requirements and efficiencies. The results of various studies are presented for a number of cycle types. The resulting trends are believed to be sensible because of the realistic turbine features. Confidence in the method is established by the modelling of a number of existing industrial gas turbines.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


1992 ◽  
Vol 114 (2) ◽  
pp. 161-168 ◽  
Author(s):  
I. S. Diakunchak

This paper describes the most important factors affecting the industrial gas turbine engine performance deterioration with service time and provides some approximate data on the prediction of the rate of deterioration. Recommendations are made on how to detect and monitor the performance deterioration. Preventative measures, which can be taken to avoid or retard the performance deterioration, are described in some detail.


Author(s):  
Ihor S. Diakunchak

This paper describes the most important factors affecting the industrial gas turbine engine performance deterioration with service time and provides some approximate data on the prediction of the rate of deterioration. Recommendations are made on how to detect and monitor the performance deterioration. Preventative measures, which can be taken to avoid or retard the performance deterioration, are described in some detail.


Author(s):  
Wilfried P. J. Visser ◽  
Michael J. Broomhead

NLR’s primary tool for gas turbine engine performance analysis is the ‘Gas turbine Simulation Program’ (GSP), a component based modeling environment. GSP’s flexible object-oriented architecture allows steady-state and transient simulation of any gas turbine configuration using a user-friendly drag&drop interface with on-line help running under Windows95/98/NT. GSP has been used for a variety of applications such as various types of off-design performance analysis, emission calculations, control system design and diagnostics of both aircraft and industrial gas turbines. More advanced applications include analysis of recuperated turboshaft engine performance, lift-fan STOVL propulsion systems, control logic validation and analysis of thermal load calculation for hot section life consumption modeling. In this paper the GSP modeling system and object-oriented architecture are described. Examples of applications for both aircraft and industrial gas turbine performance analysis are presented.


Author(s):  
Ioanna Aslanidou ◽  
Valentina Zaccaria ◽  
Evangelia Pontika ◽  
Nathan Zimmerman ◽  
Anestis I. Kalfas ◽  
...  

This paper addresses the teaching of gas turbine technology in a third-year undergraduate course in Sweden and the challenges encountered. The improvements noted in the reaction of the students and the achievement of the learning outcomes is discussed. The course, aimed at students with a broad academic education on energy, is focused on gas turbines, covering topics from cycle studies and performance calculations to detailed design of turbomachinery components. It also includes economic aspects during the operation of heat and power generation systems and addresses combined cycles as well as hybrid energy systems with fuel cells. The course structure comprises lectures from academics and industrial experts, study visits, and a comprehensive assignment. With the inclusion of all of these aspects in the course, the students find it rewarding despite the significant challenges encountered. An important contribution to the education of the students is giving them the chance, stimulation, and support to complete an assignment on gas turbine design. Particular attention is given on striking a balance between helping them find the solution to the design problem and encouraging them to think on their own. Feedback received from the students highlighted some of the challenges and has given directions for improvements in the structure of the course, particularly with regards to the course assignment. This year, an application developed for a mobile phone in the Aristotle University of Thessaloniki for the calculation of engine performance will be introduced in the course. The app will have a supporting role during discussions and presentations in the classroom and help the students better understand gas turbine operation. This is also expected to reduce the workload of the students for the assignment and spike their interest.


Author(s):  
Cleverson Bringhenti ◽  
Joa˜o Roberto Barbosa

There are many different sources of loss in gas turbines. The turbine tip clearance loss is the focus of this work. In gas turbine components such as compressor and turbine the presence of rotating blades necessitates a small annular tip clearance between the rotor blade tip and the outer casing. This clearance, although mechanically necessary, may represent a source of large loss in a turbine. The gap height can be a fraction of a millimeter but can have a disproportionately high influence on the stage efficiency. A large space between the blades and the outer casing results in detrimental leakages, while contact between them can damage the blades. Therefore, the evaluation of the sources of the performance degradation independently presents useful information that can aid in the maintenance action. As part of the overall blade loss the turbine tip clearance loss arises because at the blade tip the gas does not follow the intended path and therefore does not contribute to the turbine power output and interacts with the outer wall boundary layer. Increasing turbine tip clearance causes performance deterioration of the gas turbine and therefore increases fuel consumption. The increase in turbine tip clearance may as a result of rubs during engine transients and the interaction between the blades and the outer casing. This work deals with the study of the influence of the turbine tip clearance on a gas turbine engine, using a turbine tip clearance model incorporated to an engine deck. Actual data of an existing engine were used to check the validity of the procedure. This paper refers to a single shaft turbojet engine under development, operating under steady state condition. Different compressor maps were used to study the influence of the curve shapes on the engine performance. Two cases were considered for the performance simulation: constant corrected speed and constant maximum cycle temperature.


Author(s):  
A. Carelli

The experience acquired in developing an automotive gas-turbine engine is traced. Problems of design, construction, and development unique to a small gas-turbine engine and its application to an automobile are discussed. The engine performance and operational characteristics are then described. Finally, there is a discussion of the problems that must be solved before gas-turbine engines may successfully compete with reciprocating engines in automotive road transport.


Author(s):  
Christian Rudolf ◽  
Manfred Wirsum ◽  
Martin Gassner ◽  
Stefano Bernero

The continuous monitoring of gas turbines in commercial power plant operation provides long-term engine data of field units. Evaluation of the engine performance is challenging as, apart from variations of operating points and environmental conditions, the state of the engine is subject to changes due to the ageing of engine components. The measurement devices applied to the unit influence the analysis by means of their accuracy, which may itself alter with time. Furthermore, the available measurements do usually not cover all necessary information for the evaluation of the engine performance. To overcome these issues, this paper describes a method to systematically evaluate long term operation data without the incorporation of engine design models since the latter do not cover performance changes when components are ageing. Key focus of the methodology thereby is to assess long-term emission performance in the most reliable manner. The analysis applies a data reconciliation method to long-term operating data in order to model the engine performance including non-measured variables and to account for measurement inaccuracies. This procedure relies on redundancies in the data set due to available measurements and the identification of suitable additional constituting equations that are independent of component ageing. The resulting over-determined set of equations allows for performing a data set optimization with respect to a minimal cumulated deviation to the measurement values, which represents the most probable, real state of the engine. The paper illustrates the development and application of the method to analyse the gas path of a commercial gas turbine in a combined cycle power plant with long-term operating data.


Author(s):  
Christian Rudolf ◽  
Manfred Wirsum ◽  
Martin Gassner ◽  
Benjamin Timo Zoller ◽  
Stefano Bernero

The continuous monitoring of gas turbines in commercial power plant operation provides long-term engine data of field units. Evaluation of the engine performance from such data is challenging since, apart from variations of operating points and ambient conditions, the state of the engine is subject to change due to ageing of engine components. The installed measurement devices influence the analysis due to their accuracy, which may itself alter with time. Furthermore, the available measurements usually do not cover all necessary information for assessment of the engine performance. To overcome these issues, this paper describes a method to systematically evaluate long term operation data without the incorporation of engine design models that depict the design state of the engine, but do not cover performance changes when components are ageing. Key focus of the methodology is thereby to assess long-term emission performance in the most reliable manner. The analysis applies a data reconciliation method to long-term operating data in order to model the engine performance including non-measured variables and to account for measurement inaccuracies. This procedure relies on redundancies in the data set due to available measurements and the identification of suitable additional constituting equations that are independent of component ageing. The resulting over-determined set of equations allows for performing a data set optimization with respect to a minimal cumulated deviation to the measurement values, which represents the most probable, real state of the engine. The paper illustrates the development and application of the method for analysing emission performance with long-term operating data of a commercial gas turbine combined cycle power plant.


Sign in / Sign up

Export Citation Format

Share Document