Analysis of Long-Term Gas Turbine Operation With a Model-Based Data Reconciliation Technique

Author(s):  
Christian Rudolf ◽  
Manfred Wirsum ◽  
Martin Gassner ◽  
Stefano Bernero

The continuous monitoring of gas turbines in commercial power plant operation provides long-term engine data of field units. Evaluation of the engine performance is challenging as, apart from variations of operating points and environmental conditions, the state of the engine is subject to changes due to the ageing of engine components. The measurement devices applied to the unit influence the analysis by means of their accuracy, which may itself alter with time. Furthermore, the available measurements do usually not cover all necessary information for the evaluation of the engine performance. To overcome these issues, this paper describes a method to systematically evaluate long term operation data without the incorporation of engine design models since the latter do not cover performance changes when components are ageing. Key focus of the methodology thereby is to assess long-term emission performance in the most reliable manner. The analysis applies a data reconciliation method to long-term operating data in order to model the engine performance including non-measured variables and to account for measurement inaccuracies. This procedure relies on redundancies in the data set due to available measurements and the identification of suitable additional constituting equations that are independent of component ageing. The resulting over-determined set of equations allows for performing a data set optimization with respect to a minimal cumulated deviation to the measurement values, which represents the most probable, real state of the engine. The paper illustrates the development and application of the method to analyse the gas path of a commercial gas turbine in a combined cycle power plant with long-term operating data.

Author(s):  
Christian Rudolf ◽  
Manfred Wirsum ◽  
Martin Gassner ◽  
Benjamin Timo Zoller ◽  
Stefano Bernero

The continuous monitoring of gas turbines in commercial power plant operation provides long-term engine data of field units. Evaluation of the engine performance from such data is challenging since, apart from variations of operating points and ambient conditions, the state of the engine is subject to change due to ageing of engine components. The installed measurement devices influence the analysis due to their accuracy, which may itself alter with time. Furthermore, the available measurements usually do not cover all necessary information for assessment of the engine performance. To overcome these issues, this paper describes a method to systematically evaluate long term operation data without the incorporation of engine design models that depict the design state of the engine, but do not cover performance changes when components are ageing. Key focus of the methodology is thereby to assess long-term emission performance in the most reliable manner. The analysis applies a data reconciliation method to long-term operating data in order to model the engine performance including non-measured variables and to account for measurement inaccuracies. This procedure relies on redundancies in the data set due to available measurements and the identification of suitable additional constituting equations that are independent of component ageing. The resulting over-determined set of equations allows for performing a data set optimization with respect to a minimal cumulated deviation to the measurement values, which represents the most probable, real state of the engine. The paper illustrates the development and application of the method for analysing emission performance with long-term operating data of a commercial gas turbine combined cycle power plant.


2011 ◽  
Vol 133 (05) ◽  
pp. 30-33 ◽  
Author(s):  
Lee S. Langston

This article explores the increasing use of natural gas in different turbine industries and in turn creating an efficient electrical system. All indications are that the aviation market will be good for gas turbine production as airlines and the military replace old equipment and expanding economies such as China and India increase their air travel. Gas turbines now account for some 22% of the electricity produced in the United States and 46% of the electricity generated in the United Kingdom. In spite of this market share, electrical power gas turbines have kept a much lower profile than competing technologies, such as coal-fired thermal plants and nuclear power. Gas turbines are also the primary device behind the modern combined power plant, about the most fuel-efficient technology we have. Mitsubishi Heavy Industries is developing a new J series gas turbine for the combined cycle power plant market that could achieve thermal efficiencies of 61%. The researchers believe that if wind turbines and gas turbines team up, they can create a cleaner, more efficient electrical power system.


Author(s):  
Edgar Vicente Torres González ◽  
Raúl Lugo Leyte ◽  
Martín Salazar Pereyra ◽  
Helen Denise Lugo Méndez ◽  
Miguel Toledo Velázquez ◽  
...  

In this paper is carried out a comparison between a gas turbine power plant and a combined cycle power plant through exergetic and environmental indices in order to determine performance and sustainability aspects of a gas turbine and combined cycle plant. First of all, an exergetic analysis of the gas turbine and the combined is carried out then the exergetic and environmental indices are calculated for the gas turbine (case A) and the combined cycle (case B). The exergetic indices are exergetic efficiency, waste exergy ratio, exergy destruction factor, recoverable exergy ratio, environmental effect factor and exergetic sustainability. Besides, the environmental indices are global warming, smog formation and acid rain indices. In the case A, the two gas turbines generate 278.4 MW; whereas 415.19 MW of electricity power is generated by the combined cycle (case B). The results show that exergetic sustainability index for cases A and B are 0.02888 and 0.1058 respectively. The steam turbine cycle improves the overall efficiency, as well as, the reviewed exergetic indexes. Besides, the environmental indices of the gas turbines (case A) are lower than the combined cycle environmental indices (case B), since the combustion gases are only generated in the combustion chamber.


Author(s):  
Weimar Mantilla ◽  
José García ◽  
Rafael Guédez ◽  
Alessandro Sorce

Abstract Under new scenarios with high shares of variable renewable electricity, combined cycle gas turbines (CCGT) are required to improve their flexibility, in terms of ramping capabilities and part-load efficiency, to help balance the power system. Simultaneously, liberalization of electricity markets and the complexity of its hourly price dynamics are affecting the CCGT profitability, leading the need for optimizing its operation. Among the different possibilities to enhance the power plant performance, an inlet air conditioning unit (ICU) offers the benefit of power augmentation and “minimum environmental load” (MEL) reduction by controlling the gas turbine inlet temperature using cold thermal energy storage and a heat pump. Consequently, an evaluation of a CCGT integrated with this inlet conditioning unit including a day-ahead optimized operation strategy was developed in this study. To establish the hourly dispatch of the power plant and the operation mode of the inlet conditioning unit to either cool down or heat up the gas turbine inlet air, a mixed-integer linear optimization (MILP) was formulated using MATLAB, aiming to maximize the operational profit of the plant within a 24-hours horizon. To assess the impact of the proposed unit operating under this dispatch strategy, historical data of electricity and natural gas prices, as well as meteorological data and CO2 emission allowances price, have been used to perform annual simulations of a reference power plant located in Turin, Italy. Furthermore, different equipment capacities and parameters have been investigated to identify trends of the power plant performance. Lastly, a sensitivity analysis on market conditions to test the control strategy response was also considered. Results indicate that the inlet conditioning unit, together with the dispatch optimization, increases the power plant’s operational profit by achieving a wider operational range, particularly important during peak and off-peak periods. For the specific case study, it is estimated that the net present value of the CCGT integrated with the ICU is 0.5% higher than the power plant without the unit. In terms of technical performance, results show that the unit reduces the minimum environmental load by approximately 1.34% and can increase the net power output by 0.17% annually.


Author(s):  
Toshiaki Abe ◽  
Takashi Sugiura ◽  
Shuji Okunaga ◽  
Katsuhiro Nojima ◽  
Yasukata Tsutsui ◽  
...  

This paper presents an overview of a development project involving industrial cogeneration technology using 8,000-kW class hybrid gas turbines in which both metal and ceramics are used in parts subject to high temperatures in order to achieve high efficiency and low pollution. The development of hybrid gas turbines focuses mainly on the earlier commercialization of the turbine system. Stationary parts such as combustor liners, transition ducts, and first-stage turbine nozzles (stationary blades) are expected to be fabricated from ceramics. The project aims at developing material for these ceramic parts that will have a superior resistance to heat and oxidation. The project also aims at designing and prototyping a hybrid gas turbine system to analyze the operation in order to improve the performance. Furthermore, the prototyped hybrid gas turbine system will be tested for long-term operation (4,000 hours) to verify that the system can withstand commercialization. Studies will be conducted to ensure that the system’s soundness and reliability are sufficient for industrial cogeneration applications.


Author(s):  
S. Can Gülen

Duct firing in the heat recovery steam generator (HRSG) of a gas turbine combined cycle power plant is a commonly used method to increase output on hot summer days when gas turbine airflow and power output lapse significantly. The aim is to generate maximum possible power output when it is most needed (and, thus, more profitable) at the expense of power plant heat rate. In this paper, using fundamental thermodynamic arguments and detailed heat and mass balance simulations, it will be shown that, under certain boundary conditions, duct firing in the HRSG can be a facilitator of efficiency improvement as well. When combined with highly-efficient aeroderivative gas turbines with high cycle pressure ratios and concomitantly low exhaust temperatures, duct firing can be utilized for small but efficient combined cycle power plant designs as well as more efficient hot-day power augmentation. This opens the door to efficient and agile fossil fuel-fired power generation opportunities to support variable renewable generation.


Author(s):  
Sergey A. Ivanov ◽  
Alexander I. Rybnikov

Criteria for remaining life estimation and methods for enhancing fatigue resistance of heavy-duty gas turbine bucket metal are based on the analysis of changes in the structure and properties of metal after long-term operation. High-cycle fatigue (HCF) resistance is shown to be a decisive characteristic in the residual life estimation of turbine buckets after operation over 100,000 hours. The tests of the buckets from cast and wrought nickel-based alloys after long-term operation demonstrated decreasing of fatigue strength by up to 25%. The metal structure in operation undergoes notable deterioration mainly in phase redistribution. The size and configuration of metal phases are changing also. It caused the changes in metal properties. The decrease of the bucket fatigue strength correlates with the decrease of metal ductility. The reconditioning heat treatment resulted in restoring mechanical properties of metal. The fatigue resistance also increased nearly to the initial level. The influence of operational factors on bucket fatigue strength deterioration has been established. The mechanical damages on bucket airfoil may decrease the fatigue resistance. We found the correlation of endurance limit and damages depth. The procedures for metal properties recovering and buckets service life substantial extension have been developed. It has resulted in the extension of the buckets service life by up to 50% over the assigned life in gas turbines operated by Gazprom.


Author(s):  
Kenneth W. Van Treuren

The gas turbine industry is experiencing growth in many sectors. An important part of teaching a gas turbine course is exposing students to the practical applications of the gas turbine. This laboratory proposes an opportunity for students to view an operating gas turbine engine in an aircraft propulsion application and to model the engine performance. A Pratt and Whitney PT6A-20 turboprop was run at a local airfield and engine parameters typical of cockpit instrumentation were taken. The students, in teams of two, then modeled the system using the software PARA and PERF in an attempt to match the manufacturer’s specifications. This laboratory required students to research the parameters necessary to model this engine that were not part of the data set provided by the manufacturer. The research and modeling encompassed areas such as technology level, efficiencies, fuel consumption, and performance. The end result was a two-page report containing the students’ calculations comparing the actual performance of the engine with the manufacturer’s specifications. Supporting graphs and figures were included as appendices. The same type laboratory could be adapted for co-generation gas turbines. Over 121 colleges and universities have co-generation facilities on campus and that presents a unique opportunity for the students to observe the operation of a land-based gas turbine used for power generation. A 5 MW TB5000 manufactured by Ruston (Alstom) Gas Engines is available on the Baylor University campus and is highlighted as an example. Potential problems encountered with using the Baylor University gas turbine are discussed which include lack of appropriate engine instrumentation.


1981 ◽  
Vol 103 (4) ◽  
pp. 772-775 ◽  
Author(s):  
Akifumi Hori ◽  
Kazuo Takeya

A new reheat gas turbine system is being developed as a national project by the “Engineering Research Association for Advanced Gas Turbines” of Japan. The machine consists of two axial flow compressors, three turbines, intercooler, combustor and reheater. The pilot plant is expected to go into operation in 1982, and a prototype plant will be set up in 1984. The major objective of this reheat gas turbine is application to a combined cycle power plant, with LNG burning, and the final target of combined cycle thermal efficiency is to be 55 percent (LHV).


Author(s):  
Jeffrey A. Benoit ◽  
Charles Ellis ◽  
Joseph Cook

The search for power plant sustainability options continues as regulating agencies exert more stringent industrial gas turbine emission requirements on operators. Purchasing power for resale, de-comissioning current capabilities altogether and repowering by replacing or converting existing equipment to comply with emissions standards are economic-driven options contemplated by many mature gas turbine operators. One Las Vegas Nevada, USA operator, NV Energy, with four (4) natural gas fired W501B6 Combined Cycle units at their Edward W. Clark Generating Station, was in this situation in 2006. The units, originally configured with diffusion flame combustion systems, were permitted at 103 ppm NOx with regulatory mandates to significantly reduce NOx emissions to below 5ppm by the end of 2009. Studies were conducted by the operator to evaluate the economic viability of using a Selective Catalytic Reduction (SCR) system, which would have forced significant modifications to the exhaust system and heat recovery steam generator (HRSG), or convert the turbines to operate with dry low-emissions combustion systems. Based on life cycle cost and installation complexity, the ultra-low emission combustion system was selected. This technical paper focuses on a short summary of the end user considerations in downselecting options, the ultra low emissions technology and key features employed to achieve these low emissions, an overview of the conversion scope and a review and description of the control technology employed. Finally, a technical discussion of the low emissions operational flexibility will be provided including performance results of the converted units.


Sign in / Sign up

Export Citation Format

Share Document