Experimental and Numerical Investigation of the Unsteady Leakage Flow Through the Rotor Tip Labyrinth of a 1.5-Stage Axial Turbine

Author(s):  
K. Wolter ◽  
A. Giboni ◽  
P. Peters ◽  
J. R. Menter ◽  
H. Pfost

This paper presents the results of unsteady probe measurements and numerical flow calculations in a 1.5-stage low speed axial turbine with a straight labyrinth seal on a rotor shroud. The unsteady development of the leakage flow in the three cavities is described and analysed in detail. For the investigation of the leakage flow detailed time-accurate measurements of the three-dimensional flow field were carried out in five measurement planes from casing to the rotor shroud over more than one pitch. These measurements were carried out with a miniature pneumatic five-hole probe and miniature triple hot-wire probes. Both probes have a spherical head for better adjustment in flow direction. The high resolution of 330 measurement points in each of the five measurement planes represents the flow field in great detail. The unsteady experimental data was compared with the results of the unsteady numerical simulation of the turbine flow, calculated by the 3D-Navier-Stokes Solver CFX-TASCflow. The calculated data correspond well with the experimental results and allow a detailed analysis of the flow in the cavities of the labyrinth. As demonstrated in this paper the investigations show that the leakage flow at the inlet ant outlet of the labyrinth is strongly influenced by the different positions of the rotor to the stator. The unsteady experimental and numerical data indicates intensive effects of the leakage flow caused and influenced by the trailing edge of the first stator and the potential effect of the rotor leading edge. An intensive vortex develops depending on the rotor position in the first cavity. This vortex is also influenced by a small corner vortex above the axial inlet gap of the labyrinth. After the fins this unsteady influence of the leakage flow decreases and below the jet a large vortex moves in circumferential direction. The intensity of this circulation vortex is reduced at the end of the last cavity due to the interaction with the main flow and the flow direction out of the labyrinth. Therefore the unsteady behaviour of the leakage flow grows up, which is also caused by its uneven entry into the main flow.

Author(s):  
P. Peters ◽  
J. R. Menter ◽  
H. Pfost ◽  
A. Giboni ◽  
K. Wolter

This paper presents the results of experimental and numerical investigations into the flow in a 1.5-stage low-speed axial turbine with shrouded rotor blades and a straight through labyrinth seal. The paper focuses on the time dependent influence of the leakage flow on the downstream stator flow field. The experimental program consists of time accurate measurements of the three-dimensional properties of the flow through ten different measurement planes in the stator passage. The measurements were carried out using pneumatic five-hole probes and three dimensional hot-wire probes at the design operating point of the turbine. The measurement planes extend from the shroud to the casing. The complex three-dimensional flow field is mapped in great detail by 4,800 measurement points and 20 time steps per blade passing period. The time-accurate experimental data of the ten measurement planes was compared with the results of unsteady, numerical simulations of the turbine flow. The 3D-Navier-Stokes Solver CFX-TASCflow was used. The experimental and numerical results correspond well and allow detailed analysis of the flow phenomena. Additionally numerical data behind the rotor is used to connect the entry of the leakage flow with the flow phenomena in the downstream stator passage and behind it. The leakage flow causes strong fluctuations of the flow in the downstream stator. Above all, the high number of measurement points reveals both the secondary flow phenomena and the vortex structures within the blade passage. The time-dependence of both the position and the intensity of the vortices influenced by the leakage flow is shown. The paper shows that even at realistic clearance heights the leakage flow influences considerable parts of the downstream stator and gives rise to negative incidence and flow separation. Thus, labyrinth seal leakage flow should be taken properly into account in the design or optimization process of turbines.


Author(s):  
A. Giboni ◽  
K. Wolter ◽  
J. R. Menter ◽  
H. Pfost

This paper presents the results of experimental and numerical investigations into the flow in a 1.5-stage low-speed axial turbine with a straight labyrinth seal on the rotor shroud. The paper focuses on the time dependent interaction between the leakage flow and the main flow. The experimental program consists of time accurate measurements of the three-dimensional properties of the main flow. The region of the entering leakage flow downstream of the rotor trailing edge was of special interest. The measurements were carried out using pneumatic five-hole probes and three dimensional hot-wire probes at the design operating point of the turbine. The measurement planes behind the three blade rows extend over one pitch from the shroud to the casing. The complex three-dimensional flow field is mapped in great detail by 1,008 points per measurement plane. The time-accurate experimental data of the three measurement planes was compared with the results of unsteady, numerical simulations of the turbine flow. The 3D-Navier-Stokes Solver CFX-TASCflow was used. The experimental and numerical results correspond well and allow detailed analysis of the mixing process. As demonstrated in this paper, the leakage flow causes strong fluctuations of the secondary flow behind the rotor and the second stator. Above all, the high number of numerical grid points reveals both the secondary flow phenomena and the vortex structures of the mixing zone. The time-dependence of both position and intensity of the vortices is shown. The development of the important leakage vortex is illustrated and explained. The paper shows that even at realistic clearance heights the leakage flow gives rise to negative incidence of considerable parts of the downstream stator which causes the flow to separate. Thus, labyrinth seal leakage flow should be taken properly into account in the design or optimization process of turbomachinery.


Author(s):  
A. Giboni ◽  
J. R. Menter ◽  
P. Peters ◽  
K. Wolter ◽  
H. Pfost ◽  
...  

This paper presents the results of an experimental investigation into the flow in a 1.5-stage low-speed axial turbine with a straight labyrinth seal on the rotor shroud. The paper focuses on the interaction between the leakage flow and the main flow. The experimental program consists of measurements of the three-dimensional properties of the main flow downstream of the rotor trailing edge after the re-injection of the leakage flow. The measurements were carried out using pneumatic five-hole probes and three dimensional hot-wire probes at different operating points of the turbine. The measurement plane behind the rotor extends over one pitch from the shroud to the casing, with the complex three-dimensional flow field being mapped in great detail by 1,008 measurement points. As demonstrated in this paper, the entering leakage flow not only introduces mixing losses but also predominates the secondary flow behind the rotor and the second stator. The experimental data show that even at realistic clearance heights the leakage flow gives rise to negative incidence of considerable parts of the downstream stator which causes the flow to separate. Thus, labyrinth seal leakage flow should be taken properly into account in the design or optimisation process of turbomachinery. The high number of measurement points allows detailed analysis of the secondary flow phenomena and of the vortex structures. The time-dependence of the position and the intensity of the vortices is shown and the influence of the turbine’s operating point is presented.


Author(s):  
Mahmoud L. Mansour ◽  
John Gunaraj ◽  
Shraman Goswami

This paper summarizes the results of a validation and calibration study for two modern Computational Fluid Dynamics programs that are capable of modeling multistage axial compressors in a multi-blade row environment. The validation test case is a modern 4-stage high pressure ratio axial compressor designed and tested by Honeywell Aerospace in the late 90’s. The two CFD programs employ two different techniques for simulating the steady three-dimensional viscous flow field in a multistage/multiblade row turbo-machine. The first code, APNASA, was developed by NASA Glenn Research Center “GRC” and applies the approach by Adamczyk [1] for solving the average-passage equations which is a time and passage-averaged version of the Reynolds Averaged Navier Stokes (RANS) equations. The second CFD code is commercially marketed by ANSYS-CFX and applies a much simpler approach, known as the mixing-plane model, for combining the relative and the stationary frames of reference in a single steady 3D viscous simulation. Results from the two CFD programs are compared against the tested compressor’s overall performance data and against measured flow profiles at the leading edge of the fourth stator. The paper also presents a turbulence modeling sensitivity study aimed at documenting the sensitivity of the prediction of the flow field of such compressors to use of different turbulence closures such as the standard K-ε model, the Wilcox K-ω model and the Shear-Stress-Transport K-ω/SST turbulence model. The paper also presents results that demonstrate the CFD prediction sensitivity to modeling the compressor’s hub leakages from the inner-banded stator cavities. Comparison to the test data, using the K-ε turbulence closure, show that APNASA provides better accuracy in predicting the absolute levels of the performance characteristics. The presented results also show that better predictions by CFX can be obtained using the K-ω and the SST turbulence models. Modeling of the hub leakage flow was found to have significant and more than expected impact on the compressor predicted overall performance. The authors recommend further validation and evaluation for the modeling of the hub leakage flow to ensure realistic predictions for turbo-machinery performance.


1982 ◽  
Vol 104 (4) ◽  
pp. 760-771 ◽  
Author(s):  
B. Lakshminarayana ◽  
M. Pouagare ◽  
R. Davino

The flow field in the annulus wall and tip region of a compressor rotor was measured using a triaxial, hot-wire probe rotating with the rotor. The flow was surveyed across the entire passage at five axial locations (leading edge, 1/4 chord, 1/2 chord, 3/4 chord, and trailing edge locations) and at six radial locations inside the passage. The data derived include all three components of mean velocity. Blade-to-blade variations of the velocity components, pitch and yaw angles, as well as the passage-averaged mean properties of the annulus wall boundary layer, are derived from this data. The measurements indicate that the leakage flow starts beyond a quarter-chord and tends to roll up farther away from the suction surface than that observed in cascades. Substantial velocity deficiencies and radial inward velocities are observed in this region. The annulus wall boundary layer is well behaved up to half a chord, beyond which interactions with the leakage flow produce complex profiles.


Author(s):  
J Gao ◽  
Q Zheng ◽  
G Yue ◽  
L Sun

The losses caused by the leakage flows through the rotor tip clearance, and the mixing losses by the re-entering leakage into the main flow are considerable parts of the total losses in turbines. The main reason for the mixing losses is the different velocity components of main and leakage flows. This leads to shear stresses which cause increased turbulence and losses. This article presents a numerical investigation on three different configurations to control the leakage flows: (a) turning vanes are fixed onto the casing between the fins to turn the shroud leakage flow into the main flow direction in order to reduce the circumferential mixing losses; (b) honeycomb bands are inserted into the casing to weaken the leakage flow in the circumferential direction and reduce the circumferential mixing losses due to the special hexagon structure; and (c) downstream edge of the cavity is chamfered to reduce the radial velocity component of the leakage jet and the separation at the downstream edge, and also to reduce the streamwise mixing losses. A 1.5-stage axial turbine with high-aspect ratio blading was used in this study to investigate the sealing designs as mentioned. The flow simulation results of the three configurations were analysed and compared in this article.


2021 ◽  
Vol 11 (2) ◽  
pp. 780
Author(s):  
Dong Liang ◽  
Xingmin Gui ◽  
Donghai Jin

In order to investigate the effect of seal cavity leakage flow on a compressor’s performance and the interaction mechanism between the leakage flow and the main flow, a one-stage compressor with a cavity under the shrouded stator was numerically simulated using an inhouse circumferentially averaged through flow program. The leakage flow from the shrouded stator cavity was calculated simultaneously with main flow in an integrated manner. The results indicate that the seal cavity leakage flow has a significant impact on the overall performance of the compressor. For a leakage of 0.2% of incoming flow, the decrease in the total pressure ratio was 2% and the reduction of efficiency was 1.9 points. Spanwise distribution of the flow field variables of the shrouded stator shows that the leakage flow leads to an increased flow blockage near the hub, resulting in drop of stator performance, as well as a certain destructive effect on the flow field of the main passage.


Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi ◽  
Fei Tian ◽  
Shuo Li ◽  
...  

In order to study the effect of different numbers of impeller blades on the performance of mixed-flow pump “saddle zone”, the external characteristic test and numerical simulation of mixed-flow pumps with three different impeller blade numbers were carried out. Based on high-precision numerical prediction, the internal flow field and tip leakage flow field of mixed flow pump under design conditions and stall conditions are investigated. By studying the vorticity transport in the stall flow field, the specific location of the high loss area inside the mixed flow pump impeller with different numbers of blades is located. The research results show that the increase in the number of impeller blades improve the pump head and efficiency under design conditions. Compared to the 4-blade impeller, the head and efficiency of the 5-blade impeller are increased by 5.4% and 21.9% respectively. However, the increase in the number of blades also leads to the widening of the “saddle area” of the mixed-flow pump, which leads to the early occurrence of stall and increases the instability of the mixed-flow pump. As the mixed-flow pump enters the stall condition, the inlet of the mixed-flow pump has a spiral swirl structure near the end wall for different blade numbers, but the depth and range of the swirling flow are different due to the change in the number of blades. At the same time, the change in the number of blades also makes the flow angle at 75% span change significantly, but the flow angle at 95% span is not much different because the tip leakage flow recirculates at the leading edge. Through the analysis of the vorticity transport results in the impeller with different numbers of blades, it is found that the reasons for the increase in the values of the vorticity transport in the stall condition are mainly impacted by the swirl flow at the impeller inlet, the tip leakage flow at the leading edge and the increased unsteady flow structures.


Author(s):  
Bob Mischo ◽  
Beat Ribi ◽  
Christof Seebass-Linggi ◽  
Sebastiano Mauri

The focus of this paper lies on the leakage flow across the shroud of a centrifugal compressor impeller. It is common practice to use shrouded impellers in multi stage compressors featuring a single shaft. The rotating impeller then has to be sealed against the higher pressure in the downstream diffuser by means of labyrinths. The relative amount of leakage is higher for stages designed for low flow, meaning that the associated losses gain in relevance. In addition to this loss source, the injection of the leakage flow has a serious influence on the main flow in a region where it is prone to separation, i.e. at the suction side of the impeller blades close to the shroud, where the highest relative velocities are found. The present paper discusses the numerical results of several geometrical arrangements where the leakage flow was mixed with the main flow in different ways. The distance between the location of injection and the leading edge of the impeller as well as the orientation of the injected flow showed a distinct influence on the performance of the entire stage, mainly on stability.


Sign in / Sign up

Export Citation Format

Share Document