Modeling of Film Cooling: Part II — Model for Use in 3D CFD

Author(s):  
Andre´ Burdet ◽  
Reza S. Abhari ◽  
Martin G. Rose

Computational Fluid Dynamics (CFD) has been used recently for the simulation of the aerothermodynamics of film cooling. The direct calculation of a single cooling hole requires substantial computational resources. A parametric study, for the optimization of the cooling system in real engines, is much too time consuming due to the large number of grid nodes required to cover all injection holes and plenum chambers. For these reasons a hybrid approach is proposed, based on the modeling of the near film-cooling hole flow, tuned using experimental data, while computing directly the flow field in the blade-to-blade passage. A new injection film-cooling model is established, which can be embedded in a CFD code, to lower the Central Processing Unit (CPU) costs and reduce the simulation turnover time. The goal is to be able to simulate film-cooled turbine blades without having to explicitly mesh the holes with the plenum chamber. The stability, low CPU overhead level (1%) and accuracy of the proposed CFD-embedded film-cooling model, are demonstrated in the ETHZ steady film-cooled flat plate experiment [5] presented in Part I of this two-part paper. The prediction of film-cooling effectiveness using the CFD-embedded model is evaluated.

2006 ◽  
Vol 129 (2) ◽  
pp. 221-231 ◽  
Author(s):  
André Burdet ◽  
Reza S. Abhari ◽  
Martin G. Rose

Computational fluid dynamics (CFD) has recently been used for the simulation of the aerothermodynamics of film cooling. The direct calculation of a single cooling hole requires substantial computational resources. A parametric study, for the optimization of the cooling system in real engines, is much too time consuming due to the large number of grid nodes required to cover all injection holes and plenum chambers. For these reasons, a hybrid approach is proposed, based on the modeling of the near film-cooling hole flow, tuned using experimental data, while computing directly the flow field in the blade-to-blade passage. A new injection film-cooling model is established, which can be embedded in a CFD code, to lower the central processing unit (CPU) cost and to reduce the simulation turnover time. The goal is to be able to simulate film-cooled turbine blades without having to explicitly mesh inside the holes and the plenum chamber. The stability, low CPU overhead level (1%) and accuracy of the proposed CFD-embedded film-cooling model are demonstrated in the ETHZ steady film-cooled flat-plate experiment presented in Part I (Bernsdorf, Rose, and Abhari, 2006, ASME J. Turbomach., 128, pp. 141–149) of this two-part paper. The prediction of film-cooling effectiveness using the CFD-embedded model is evaluated.


Author(s):  
Moon-Young Cho ◽  
Hyeon-Seok Seo ◽  
Youn-Jea Kim

In this study, the effect of a row of double-jet film-cooling hole configurations on the thermal-flow characteristics of gas turbine blades was examined. To investigate the effect of the interference of anti-kidney vortices, the ratios of the pitch distance and hole diameter (P/d=5, 6.25, 8.333) were considered with two different compound angles (λ=0°, 4°). The film cooling performance and the generated losses were studied. Then, the relevant mechanisms were identified and explained. A numerical study was performed using ANSYS CFX 14.5 with the shear stress transport (SST) turbulent model. The blowing ratio was kept at a constant value of M=1.5. The film cooling effectiveness and temperature distribution are graphically depicted with various geometrical configurations.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Sebastien Wylie ◽  
Alexander Bucknell ◽  
Peter Forsyth ◽  
Matthew McGilvray ◽  
David R. H. Gillespie

Internal cooling passages of turbine blades have long been at risk to blockage through the deposition of sand and dust during fleet service life. The ingestion of high volumes of volcanic ash (VA) therefore poses a real risk to engine operability. An additional difficulty is that the cooling system is frequently impossible to inspect in order to assess the level of deposition. This paper reports results from experiments carried out at typical high pressure (HP) turbine blade metal temperatures (1163 K to 1293 K) and coolant inlet temperatures (800 K to 900 K) in engine scale models of a turbine cooling passage with film-cooling offtakes. Volcanic ash samples from the 2010 Eyjafjallajökull eruption were used for the majority of the experiments conducted. A further ash sample from the Chaiten eruption allowed the effect of changing ash chemical composition to be investigated. The experimental rig allows the metered delivery of volcanic ash through the coolant system at the start of a test. The key metric indicating blockage is the flow parameter (FP), which can be determined over a range of pressure ratios (1.01–1.06) before and after each experiment, with visual inspection used to determine the deposition location. Results from the experiments have determined the threshold metal temperature at which blockage occurs for the ash samples available, and characterize the reduction of flow parameter with changing particle size distribution, blade metal temperature, ash sample composition, film-cooling hole configuration and pressure ratio across the holes. There is qualitative evidence that hole geometry can be manipulated to decrease the likelihood of blockage. A discrete phase computational fluid dynamics (CFD) model implemented in Fluent has allowed the trajectory of the ash particles within the coolant passages to be modeled, and these results are used to help explain the behavior observed.


Author(s):  
Sang Hyun Oh ◽  
Dong Hyun Lee ◽  
Kyung Min Kim ◽  
Moon Young Kim ◽  
Hyung Hee Cho

An experimental investigation is conducted on the cooling effectiveness of full-coverage film cooled wall with impingement jets. Film cooling plate is made of stainless steel, thus the adiabatic film cooling effectiveness and the cooling effect of impingement jet underneath the film cooling plate are comprised in the cooling effectiveness. Infra-red camera is used to measure the temperature of film cooled surfaces. Experiments are conducted with different film cooling hole angles, such as 35° and 90°. Diameters of both film cooling holes and impinging jet holes are 5 mm. The jet Reynolds number base on the hole diameter (Red) ranges from 3,000 to 5,000 and equivalent blowing ratios (M) varies from 0.3 to 0.5, respectively. The distance between the injection plate and the film cooling plate is 1, 3 and 5 times of the hole diameter. The streamwise and spanwise hole spacing to the hole diameter ratio (p/d) are 3 for both the film cooling hole plate and the impingement jet hole plate. The 35° angled film cooling hole arrangement shows higher film cooling effectiveness than the 90° film cooling hole arrangement. As the blowing ratio increases, the cooling effectiveness is enhanced for both the 35° almost constant regardless of H/d, while H/d = 1 shows a minimum value for the angled film cooling hole.


Author(s):  
Shubham Agarwal ◽  
Laurent Gicquel ◽  
Florent Duchaine ◽  
Nicolas Odier ◽  
Jérôme Dombard

Abstract Understanding the flow from a cooling hole is very important to be able to properly control film cooling of turbine blades. For this purpose, large eddy simulation (LES) investigation of the flow inside a cylindrical film cooling hole is presented in this paper. Two different geometries, with different hole metering lengths, are investigated at a blowing ratio of 0.5. The main flow structure in the hole are the hairpin vortices that originate from a shear layer formed due to flow separation near the hole entry. The comparison of these hairpin vortices in the two cases with different hole metering length is presented in detail. The results show that in case of the hole with longer length the hairpin vortices dissociate within the hole itself. In such a case a uniform flow is seen at the hole exit. However, when the hole length is significantly decreased, it is shown that these vortices exit the hole and effect the vortex structures outside the hole, thereby accounting for the reduction in film cooling effectiveness. Overall, these results bring forth one other major reason for the reduction in film cooling effectiveness with reduction in hole length, i.e. the exit of in-hole hairpin vortices into the crossflow.


Author(s):  
Sebastien Wylie ◽  
Alexander Bucknell ◽  
Peter Forsyth ◽  
Matthew McGilvray ◽  
David R. H. Gillespie

Internal cooling passages of turbine blades have long been at risk to blockage through the deposition of sand and dust during fleet service life. The ingestion of high volumes of volcanic ash therefore poses a real risk to engine operability. An additional difficulty is that the cooling system is frequently impossible to inspect in order to assess the level of deposition. This paper reports results from experiments carried out at typical HP turbine blade metal temperatures (1163K to 1293K) and coolant inlet temperatures (800K to 900K) in engine scale models of a turbine cooling passage with film-cooling offtakes. Volcanic ash samples from the 2010 Eyjafjallajökull eruption were used for the majority of the experiments conducted. A further ash sample from the Chaiten eruption allowed the effect of changing ash chemical composition to be investigated. The experimental rig allows the metered delivery of volcanic ash through the coolant system at the start of a test. The key metric indicating blockage is the flow parameter which can be determined over a range of pressure ratios (1.01–1.06) before and after each experiment, with visual inspection used to determine the deposition location. Results from the experiments have determined the threshold metal temperature at which blockage occurs for the ash samples available, and characterise the reduction of flow parameter with changing particle size distribution, blade metal temperature, ash sample composition, film-cooling hole configuration and pressure ratio across the holes. There is qualitative evidence that hole geometry can be manipulated to decrease the likelihood of blockage. A discrete phase CFD model implemented in Fluent has allowed the trajectory of the ash particles within the coolant passages to be modelled, and these results are used to help explain the behaviour observed.


2014 ◽  
Vol 660 ◽  
pp. 664-668
Author(s):  
Kamil Abdullah ◽  
Hazim Fadli Aminnuddin ◽  
Akmal Nizam Mohammed

Film cooling has been extensively used to provide thermal protection for the external surface of the gas turbine blades. Numerous number of film cooling holes designs and arrangements have been introduced. The main motivation of these designs and arrangements are to reduce the lift-off effect cause by the counter rotating vortices (CRVP) produce by cylindrical cooling hole. One of the efforts is the introduction of newly found anti-vortex film cooling design. The present study focuses on anti-vortex holes arrangement consists of a main hole and pair of smaller holes. All three holes share a common inlet with the outlet of the smaller holes varies base on it relative position towards the main hole. Three anti-vortex holes arrangements have been considered; downstream anti-vortex hole arrangement (DAV), lateral anti-vortex hole arrangement (LAV), and upstream anti-vortex hole arrangement (UAV). In addition, a single hole (SH) film cooling has also been considered as the baseline. The investigation make used of ANSYS CFX software ver. 14. The investigations are made through Reynolds Average Navier Stokes analyses with the application of shear k-ε turbulence model. The results show that the anti-vortex designs produce significant improvement in term of film cooling effectiveness and distribution. The LAV arrangement shows the best film cooling effectiveness distribution among all considered cases and is consistent for all blowing ratios (BR). The results also unveil the formation of new vortex pair on both side of the primary hole CRVP. Interaction between the new vortices and the main CRVP structure reduce the lift off explaining the increased lateral film effectiveness.


2013 ◽  
Vol 740 ◽  
pp. 830-835
Author(s):  
Ping Dai ◽  
Nai Yun Yu

The development of a new generation of high performance aircraft turbine jet engine desires gas turbines to be operated at very high rotor inlet gas temperatures. This brings a problem on the effective cooling of turbine blades. Up to now, modified film cooling is still an effective cooling technique. The influence of air-film hole structures on the air-film cooling efficiency cant be ignored. A survey of the research results concerning novel air-film cooling hole about home and abroad were given and high efficiency crescent air-film hole geometry was put forward. Through a comparative study of film cooling characteristic with cylindrical air-film hole and forward diffused air-film hole and crescent air-film hole found effectiveness of the crescent air-film hole was superior to other air-film holes in various blowing ratios. The crescent air-film hole could greatly reduce the kidney vortex intensity, and then enhanced the air-film cooling effectiveness.


Author(s):  
Eiji Sakai ◽  
Toshihiko Takahashi ◽  
Yukiko Agata

This paper reports detailed measurement of film cooling effectiveness for a scaled up film-cooling hole with an expanded exit fed by a smooth and ribbed secondary flow channel, an arrangement typical of turbine blades. The experiments are carried out at blowing ratios ranging from 0.4 to 1.25, and ten different rib patterns including forward oriented ribs and inverse oriented ribs are evaluated. Further, to develop an efficient film-cooling technique, several kinds of bumps are installed downstream of the hole exits, and the effects of the bumps on film effectiveness are investigated. The bump structures tested here are semicircular, hemispherical, and cylindrical bumps. The results show that the rib orientation strongly affects film effectiveness. When the blowing ratio is comparatively low, the forward oriented ribs afford higher film effectiveness. On the other hand, when the blowing ratio is comparatively high, the inverse oriented ribs afford higher film effectiveness. The cylindrical bump provides a better spreading of the ejected secondary flow than the other bumps, leading to higher film effectiveness. To clarify how the bumps improve the film effectiveness, computational simulations are performed. The simulations indicate that a longitudinal vortex, formed at the trailing edge of the cylindrical bump improves the film effectiveness by generating downward velocity vectors.


Author(s):  
Kozo Nita ◽  
Yoji Okita ◽  
Chiyuki Nakamata ◽  
Seiji Kubo ◽  
Kazuo Yonekura ◽  
...  

Film cooling is a very effective cooling method for protecting the turbine blades exposed to hot gas from the heat. Since its cooling effectiveness is highly dependent on the shape of the hole, a wide variety of concepts and design parameters regarding hole shapes have been researched. However, there are no well-defined ways to determine the optimum shape of a film cooling hole. The CFD is a powerful tool for film cooling hole optimization. But with the number of parameters that define the film cooling hole shapes being so numerous, analytical optimization with CFD often requires computational resources that are unrealistic for the average design environment. Accordingly, for CFD to be effective in the optimization process, it is necessary to reduce the number of computations or shorten the calculation time per computation. In order to solve this problem, this paper presents a novel approach of applying 3D-POD (3D-Proper Orthogonal Decomposition) to the optimization of film cooling holes. POD is one of the most important component analysis methods and has the potential to reduce the number of parameters. From the computation results, a solution group was made by the RSM (Response Surface Method) and assessment functions, i.e., film cooling effectiveness, heat transfer coefficient, mixing loss, concentration of stress and robustness were considered first. In the end, however, considering the sensitivity of each objective function, the optimal hole shapes were obtained with only the film effectiveness being evaluated. In the following sections, this method and its results are described in detail.


Sign in / Sign up

Export Citation Format

Share Document