Design and Development of a Low-Cost, High Temperature Silicon Carbide Micro-Channel Recuperator

Author(s):  
Merrill A. Wilson ◽  
Kurt Recknagle ◽  
Kriston Brooks

Typically, ceramic micro-channel devices are used for high temperature heat exchangers, catalytic reactors, electronics cooling, and processing of corrosive streams where the thermomechanical benefits of ceramic materials are desired. These benefits include: high temperature mechanical and corrosion properties and tailorable material properties such as thermal expansion, electrical conductivity and thermal conductivity. In addition, by utilizing Laminated Object Manufacturing (LOM) methods, inexpensive ceramic materials can be layered, featured and laminated in the green state and co-sintered to form monolithic structures amenable to mass production. In cooperation with the DOE and Pacific Northwest National Labs, silicon carbide (SiC) based micro-channel recuperator concepts are being developed and tested. The performance benefits of a high temperature, micro-channel heat exchanger are realized from the improved thermal efficiency of the high temperature cycles and the improved effectiveness of micro-channels for heat transfer. In designing these structures, the heat and mass transfer within the micro-channels are being analyzed with heat transfer models, computational fluid dynamics models and validated with experimental results. As an example, a typical micro-turbine cycle was modified and modeled to incorporate this ceramic recuperator and it was found that the overall thermal efficiency of the micro-turbine could be improved from about 27% to over 40%. Process improvements require technical advantages and cost advantages. These LOM methodologies have been based on well-proven industry standard processes where labor, throughput and capital estimates have been tested. Following these cost models and validation at the prototype scale, cost estimates were obtained. For the micro-turbine example, cost estimates indicate that the high-temperature SiC recuperator would cost about $200 per kWe. The development of these heat exchangers is multi-faceted and this paper focuses on the design optimization of a layered micro-channel heat exchanger, its performance testing, and fabrication development through LOM methodologies.

Author(s):  
Merrill A. Wilson ◽  
Charles Lewinsohn ◽  
James Cutts ◽  
Valery Ponyavin

It has been proposed that compact ceramic heat exchangers can be used for high temperature, corrosive applications. This paper discusses the design development of a micro-channel heat exchanger for the decomposition of sulfuric acid as part of the hydrogen producing sulfur iodine thermo-chemical cycle. Corrosion studies of candidate materials indicate that ceramic materials have superior corrosion and creep resistance under these high temperature, high acid concentration environments. This compact heat exchanger utilizes micro-channels to enhance the heat transfer while maintaining low pressure drops within the system. Through modular stacking of these micro-channel networks, a "shell and plate" configuration enables the processing of commercial-scale processes. The ceramic materials provide for long-life applications. The design of the micro-channel features captures the enhanced heat transfer characteristics at the micro-scale; the modular assembly permits the integration into macro-scale processes. As a case study, the thermal performance and the economics were investigated to determine the feasibility of this compact heat exchanger for the hydrogen producing sulfur iodine thermo-chemical cycle. The results of this design effort with its associated performance goals and development status will be reported.


2003 ◽  
Author(s):  
Merrill A. Wilson ◽  
Steven M. Quist

Efficiency and emissions of advanced gas turbine power cycles can be improved by incorporating high-temperature ceramic heat exchangers (see Figure 1). In cooperation with the DOE, preliminary development and testing of SiC based structures has been completed. This program has focused on four initial areas: thermo-mechanical degradation as a function of the chemical operating environments, design of a layered microchannel heat exchanger, thermo-mechanical testing and analysis of these structures, and fabrication development through rapid prototyping techniques.


2018 ◽  
Vol 941 ◽  
pp. 2148-2153
Author(s):  
James Allen Zess ◽  
Martin Dressler

Micro-channel heat exchangers (MCHXs) manufactured by Zess & Lin Industries provide highly effective heat transfer and are used in a growing number of critical applications. MCHXs consist of stainless steel or high temperature Nickel-based alloy plates with micro channels that are chemically etched or machined into each plate. These traditional extractive manufacturing methods of chemical etching and machining used in manufacturing MCHX plates are difficult and costly as a large percentage of expensive alloy is lost during manufacturing.


Author(s):  
S. Menon ◽  
H. Ganti ◽  
H. Wang ◽  
C. Hagen

Abundant availability and potential for lower CO2 emissions are drivers for increased utilization of natural gas in automotive engines for transportation applications. However scarce refueling resources for on-road vehicles impose an infrastructure limited barrier on natural gas use in transportation. A novel ‘bimodal’ engine which can operate in a compressor mode has been developed that allows on-board refueling of natural gas where available without the need for any supplemental device. Engine compression of natural gas however results in considerable heating of the gas which is undesirable from a system stand-point. Micro-channel heat exchangers have been developed to absorb heat from the natural gas using engine coolant and compressed air. This work presents the design and development of the micro-channel heat exchangers as well as a preliminary analysis of system performance. Design methodology for the heat exchanger was based on trade-off studies that correlated system performance with component design. Energy flows through the system are analyzed as a function of engine compression ratio, operating speed, charge flow rate, and ambient air and natural gas conditions. These results are further used to estimate heat transfer co-efficient and effectiveness of the micro-channel heat exchanger. Future work involves developing CFD models of the heat exchanger to obtain a detailed understanding of the conjugate heat transfer and fluid flow processes within the micro-channels.


Author(s):  
Ian W. Jentz ◽  
Mark H. Anderson

Abstract The Homogenized Heat Exchanger Thermohydraulic (HHXT) modeling environment has been developed to provide thermodynamic modeling of printed circuit heat exchangers (PCHEs). This finite element approach solves solid conduction and fluid thermohydraulics simultaneously, without the need to mesh the minuscule micro-channels of a PCHE. The model handles PCHE features such as headers, solid side walls, and channel inlet and outlet regions, in addition to the micro-channel core. The HHXT model resolves PCHE thermohydraulics using simple model definitions and minimum computational overhead, making it an ideal design tool. This work introduces the thermohydraulic model at the core of HHXT. The homogenization approach used in the model occupies a medium between simplified linear analyses of heat transfer within a PCHE and the brute force of a fully resolved finite element, or computational fluid dynamics, model. An example problem modeling an experimental PCHE is presented. The ability of the HHXT model to simulate fluid flow through a directional varying micro-channel core of two heat-exchanging streams is demonstrated. The HHXT model is being distributed for free within the research community.


Author(s):  
Q. Y. Chen ◽  
M. Zeng ◽  
D. H. Zhang ◽  
Q. W. Wang

In the present paper, the compact ceramic high temperature heat exchangers with parallel offset strip fins and inclined strip fins (inclined angle β = 0∼70°) are investigated with CFD method. The numerical simulations are carried out for high temperature (1500°C), without and with radiation heat transfer, and the periodic boundary is used in transverse direction. The fluid of high temperature side is the standard flue gas. The material of heat exchanger is SiC. NuS-G.R(with surface and gaseous radiation heat transfer) is averagely higher than NuNo.R (without radiation heat transfer) by 7% and fS-G.R is averagely higher than fNo.R by 5%. NuS-G.R(with surface and gaseous radiation heat transfer) is averagely higher than NuS.R (with only surface radiation heat transfer) by 0.8% and fS-G.R is averagely higher than fS.R by 3%. The thermal properties have significantly influence on the heat transfer and pressure drop characteristics, respectively. The heat transfer performance of the ceramic heat exchanger with inclined fins (β = 30°) is the best.


Author(s):  
Merrill A. Wilson ◽  
Charles Lewinsohn ◽  
James Cutts ◽  
Yitung Chen ◽  
Valery Ponyavin

The recent developments in the energy industry have kindled renewed interest in producing energy more efficiently. This has motivated the development of higher temperature cycles and their associated equipment. In this paper we will discuss several design configurations coupled with the inherent properties of preferred ceramic materials to assess the viability and design reliability of ceramic heat exchangers for next generation high temperature heat exchangers. These analyses have been extended to conceptually compare the traditional shell and tube heat exchanger with shell and plate heat exchangers. These analyses include hydrodynamic, heat transfer, mechanical stress and reliability models applicable to an Intermediate Heat Exchanger (IHX) and Process Coupling Heat Exchangers. It was found that ceramic micro-channel heat exchanger designs proved to have the greatest reliability due to their inherent mechanical properties, minimal thermo-mechanical stresses while improving the performance efficiency in a compact footprint.


Author(s):  
Mesbah G. Khan ◽  
Amir Fartaj

In past few years, narrow diameter flow passages (≤3 mm) have attracted huge research attentions due to their several advantageous features over conventional tubes (≥6 mm) especially from the view points of higher heat transfer, lesser weight, and smaller device size. Several classifications of narrow channels, based on sizes, are proposed in the open literature from mini to meso and micro (3 mm to 100 μm). The meso- and micro-channels have not yet entered into the HVAC and automotive heat exchanger industries to the expected potentials to take the above-mentioned advantages. The reasons may be the limited availability of experimental data on pressure drop and heat transfer and the lack of consolidated design correlations as compared to what is established for compact heat exchangers. While a number of studies available on standalone single straight channels, works on multi-channel slab similar to those used as typical thermal heat exchanger core elements are inadequate, especially the research on multichannel serpentine slab are limited in the open literature. The 50% ethylene glycol and water mixture is widely used in heat exchanger industry as a heat transfer fluid. Studies of pressure drop and heat transfer on this commercially important fluid using narrow tube multi-channel slab is scarce and the availability of experimental data is rare in the open literature. Conducting research on various shapes of meso- and micro-channel heat exchanger cores using a variety working fluids are a definite needs as recommended and consistently urged in ongoing research publications in this promising area. Under present long-term project, an automated dynamic single-phase experimental infrastructure has been developed to carryout the fluid flow and heat transfer research in meso- and micro-channel test specimens and prototype microchannel heat exchanger using a variety of working fluids in air-to-liquid crossflow orientation. In the series, experiments have been conducted on 50% ethylene glycol and water solution in a serpentine meso-channel slab having 68 individual channels of 1 mm hydraulic diameter to obtain the heat transfer data and the general pressure drop nature of the test fluid. Current paper presents the heat transfer characteristics of ethylene glycol-water mixture and the Reynolds number effects on pressure drop, heat transfer rate, test specimen NTU and effectiveness, overall thermal resistance, and the Nusselt number.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 675 ◽  
Author(s):  
Jingang Yang ◽  
Yaohua Zhao ◽  
Aoxue Chen ◽  
Zhenhua Quan

Domestic heat exchangers, even though widely used in industry, are not adequate for studies on low-temperature flue-gas use technologies. Despite spite their limitations, very few theoretical models have been investigated based on practical applications. Moreover, most of the existing studies on heat exchangers have focused particularly on one-dimensional and two-dimensional heat transfer models, while limited studies focus on three-dimensional ones. Therefore, this study aims at investigating the thermal performance of a low-temperature flue-gas heat recovery unit in the cold regions. Specifically, this study was conducted in the context of Changchun of Jilin Province, China, a city with the mean ambient temperature of −14 °C and mean diurnal temperature of −10 °C during winter. Experimental results showed that the thermal efficiency of the heat exchanger was higher than 60%. Through assessing the heat exchange coefficient and heat exchange efficiency of the heat exchanger, it is found that the thermal efficiency had been improved up to 0.77–0.83. Furthermore, the ICEPAK software and the standard k-ε RNG turbulence model were used to carry out simulations. The velocity and outlet temperature of fresh airflow and polluted airflow were simulated through setting different inlet temperatures of fresh air and polluted air inlet. Numerical results further indicated that the flow state was laminar flow. The micro heat pipe array side had small eddies and the heat transfer was significantly improved due to the flow of air along the surface of the micro heat pipe.


Author(s):  
C. Bower ◽  
A. Orgega ◽  
P. Skandakumaran ◽  
R. Vaidyanathan ◽  
T. Phillips

Heat transfer and fluid flow in a novel class of water-cooled milli-channel heat sinks are investigated. The heat sinks are manufactured using an extrusion freeform fabrication (EFF) rapid prototyping technology and a water-soluble polymer material. EFF permits the fabrication of geometrically complex, three-dimensional structures in non-traditional materials. Silicon carbide, SiC, is TEC-matched to silicon and is an ideal material for heat exchangers that will be mounted directly to heat dissipating electronic packages. This paper presents experimental results on the heat transfer and flow in small SiC heat exchangers with multiple rows of parallel channels oriented in the flow direction. Rectangular heat exchangers with 3.2 cm × 2.2 cm planform area and varying thickness, porosity, number of channels, and channel diameter were fabricated and tested. Overall heat transfer and pressure drop coefficients in single-phase flow regimes are presented and analyzed. The per channel Reynolds number places the friction coefficients in the developing to developed hydrodynamic regime, and showed excellent agreement with laminar theory. The overall heat transfer coefficients for a single row SiC heat exchanger compared favorably with a validation heat exchanger fabricated from copper, however the heat transfer coefficient in multiple row heat sinks did not agree well with the laminar theory.


Sign in / Sign up

Export Citation Format

Share Document