Some insights for the prediction of near-wall turbulence

2013 ◽  
Vol 723 ◽  
pp. 126-139 ◽  
Author(s):  
Farid Karimpour ◽  
Subhas K. Venayagamoorthy

AbstractIn this paper, we revisit the eddy viscosity formulation to highlight a number of important issues that have direct implications for the prediction of near-wall turbulence. For steady wall-bounded turbulent flows, we make the equilibrium assumption between rates of production ($P$) and dissipation ($\epsilon $) of turbulent kinetic energy ($k$) in the near-wall region to propose that the eddy viscosity should be given by ${\nu }_{t} \approx \epsilon / {S}^{2} $, where $S$ is the mean shear rate. We then argue that the appropriate velocity scale is given by $\mathop{(S{T}_{L} )}\nolimits ^{- 1/ 2} {k}^{1/ 2} $ where ${T}_{L} = k/ \epsilon $ is the turbulence (decay) time scale. The difference between this velocity scale and the commonly assumed velocity scale of ${k}^{1/ 2} $ is subtle but the consequences are significant for near-wall effects. We then extend our discussion to show that the fundamental length and time scales that capture the near-wall behaviour in wall-bounded shear flows are the shear mixing length scale ${L}_{S} = \mathop{(\epsilon / {S}^{3} )}\nolimits ^{1/ 2} $ and the mean shear time scale $1/ S$, respectively. With these appropriate length and time scales (or equivalently velocity and time scales), the eddy viscosity can be rewritten in the familiar form of the $k$–$\epsilon $ model as ${\nu }_{t} = \mathop{(1/ S{T}_{L} )}\nolimits ^{2} {k}^{2} / \epsilon $. We use the direct numerical simulation (DNS) data of turbulent channel flow of Hoyas & Jiménez (Phys. Fluids, vol. 18, 2006, 011702) and the turbulent boundary layer flow of Jiménez et al. (J. Fluid Mech. vol. 657, 2010, pp. 335–360) to perform ‘a priori’ tests to check the validity of the revised eddy viscosity formulation. The comparisons with the exact computations from the DNS data are remarkable and highlight how well the equilibrium assumption holds in the near-wall region. These findings could prove to be useful in near-wall modelling of turbulent flows.

1999 ◽  
Vol 389 ◽  
pp. 335-359 ◽  
Author(s):  
JAVIER JIMÉNEZ ◽  
ALFREDO PINELLI

Numerical experiments on modified turbulent channels at moderate Reynolds numbers are used to differentiate between several possible regeneration cycles for the turbulent fluctuations in wall-bounded flows. It is shown that a cycle exists which is local to the near-wall region and does not depend on the outer flow. It involves the formation of velocity streaks from the advection of the mean profile by streamwise vortices, and the generation of the vortices from the instability of the streaks. Interrupting any of those processes leads to laminarization. The presence of the wall seems to be only necessary to maintain the mean shear. The generation of secondary vorticity at the wall is shown to be of little importance in turbulence generation under natural circumstances. Inhibiting its production increases turbulence intensity and drag.


2012 ◽  
Vol 550-553 ◽  
pp. 2014-2018
Author(s):  
Xiao Lan Zhou ◽  
Cai Xi Liu ◽  
Yu Hong Dong

Electrochemical mass transfer in turbulent flows and binary electrolytes is investigated. The primary objective is to provide information about mass transfer in the near-wall region between a solid boundary and a turbulent fluid flow at different Schmidt numbers. Based on the computational fluid dynamics and electrochemistry theories, a model for turbulent electrodes channel flow is established. The turbulent mass transfer in electrolytic processes has been predicted by the direct numerical simulation method under limiting current and galvanostatic conditions, we investigate mean concentration and the structure of the concentration fluctuating filed for different Schmidt numbers from 0.1 to 100 .The effect of different concentration boundary conditions at the electrodes on the near-wall turbulence statistics is also discussed.


2012 ◽  
Vol 699 ◽  
pp. 50-78 ◽  
Author(s):  
G. Sardina ◽  
P. Schlatter ◽  
L. Brandt ◽  
F. Picano ◽  
C. M. Casciola

AbstractWe study the two main phenomenologies associated with the transport of inertial particles in turbulent flows, turbophoresis and small-scale clustering. Turbophoresis describes the turbulence-induced wall accumulation of particles dispersed in wall turbulence, while small-scale clustering is a form of local segregation that affects the particle distribution in the presence of fine-scale turbulence. Despite the fact that the two aspects are usually addressed separately, this paper shows that they occur simultaneously in wall-bounded flows, where they represent different aspects of the same process. We study these phenomena by post-processing data from a direct numerical simulation of turbulent channel flow with different populations of inertial particles. It is shown that artificial domain truncation can easily alter the mean particle concentration profile, unless the domain is large enough to exclude possible correlation of the turbulence and the near-wall particle aggregates. The data show a strong link between accumulation level and clustering intensity in the near-wall region. At statistical steady state, most accumulating particles aggregate in strongly directional and almost filamentary structures, as found by considering suitable two-point observables able to extract clustering intensity and anisotropy. The analysis provides quantitative indications of the wall-segregation process as a function of the particle inertia. It is shown that, although the most wall-accumulating particles are too heavy to segregate in homogeneous turbulence, they exhibit the most intense local small-scale clustering near the wall as measured by the singularity exponent of the particle pair correlation function.


2014 ◽  
Vol 760 ◽  
pp. 304-312 ◽  
Author(s):  
Farid Karimpour ◽  
Subhas K. Venayagamoorthy

AbstractIn this study, we revisit the consequence of assuming equilibrium between the rates of production ($P$) and dissipation $({\it\epsilon})$ of the turbulent kinetic energy $(k)$ in the highly anisotropic and inhomogeneous near-wall region. Analytical and dimensional arguments are made to determine the relevant scales inherent in the turbulent viscosity (${\it\nu}_{t}$) formulation of the standard $k{-}{\it\epsilon}$ model, which is one of the most widely used turbulence closure schemes. This turbulent viscosity formulation is developed by assuming equilibrium and use of the turbulent kinetic energy $(k)$ to infer the relevant velocity scale. We show that such turbulent viscosity formulations are not suitable for modelling near-wall turbulence. Furthermore, we use the turbulent viscosity $({\it\nu}_{t})$ formulation suggested by Durbin (Theor. Comput. Fluid Dyn., vol. 3, 1991, pp. 1–13) to highlight the appropriate scales that correctly capture the characteristic scales and behaviour of $P/{\it\epsilon}$ in the near-wall region. We also show that the anisotropic Reynolds stress ($\overline{u^{\prime }v^{\prime }}$) is correlated with the wall-normal, isotropic Reynolds stress ($\overline{v^{\prime 2}}$) as $-\overline{u^{\prime }v^{\prime }}=c_{{\it\mu}}^{\prime }(ST_{L})(\overline{v^{\prime 2}})$, where $S$ is the mean shear rate, $T_{L}=k/{\it\epsilon}$ is the turbulence (decay) time scale and $c_{{\it\mu}}^{\prime }$ is a universal constant. ‘A priori’ tests are performed to assess the validity of the propositions using the direct numerical simulation (DNS) data of unstratified channel flow of Hoyas & Jiménez (Phys. Fluids, vol. 18, 2006, 011702). The comparisons with the data are excellent and confirm our findings.


2011 ◽  
Vol 687 ◽  
pp. 141-170 ◽  
Author(s):  
C. Manes ◽  
D. Poggi ◽  
L. Ridolfi

AbstractThis paper presents an experimental study devoted to investigating the effects of permeability on wall turbulence. Velocity measurements were performed by means of laser Doppler anemometry in open channel flows over walls characterized by a wide range of permeability. Previous studies proposed that the von Kármán coefficient associated with mean velocity profiles over permeable walls is significantly lower than the standard values reported for flows over smooth and rough walls. Furthermore, it was observed that turbulent flows over permeable walls do not fully respect the widely accepted paradigm of outer-layer similarity. Our data suggest that both anomalies can be explained as an effect of poor inner–outer scale separation if the depth of shear penetration within the permeable wall is considered as the representative length scale of the inner layer. We observed that with increasing permeability, the near-wall structure progressively evolves towards a more organized state until it reaches the condition of a perturbed mixing layer where the shear instability of the inflectional mean velocity profile dictates the scale of the dominant eddies. In our experiments such shear instability eddies were detected only over the wall with the highest permeability. In contrast attached eddies were present over all the other wall conditions. On the basis of these findings, we argue that the near-wall structure of turbulent flows over permeable walls is regulated by a competing mechanism between attached and shear instability eddies. We also argue that the ratio between the shear penetration depth and the boundary layer thickness quantifies the ratio between such eddy scales and, therefore, can be used as a diagnostic parameter to assess which eddy structure dominates the near-wall region for different wall permeability and flow conditions.


1995 ◽  
Vol 287 ◽  
pp. 317-348 ◽  
Author(s):  
James M. Hamilton ◽  
John Kim ◽  
Fabian Waleffe

Direct numerical simulations of a highly constrained plane Couette flow are employed to study the dynamics of the structures found in the near-wall region of turbulent flows. Starting from a fully developed turbulent flow, the dimensions of the computational domain are reduced to near the minimum values which will sustain turbulence. A remarkably well-defined, quasi-cyclic and spatially organized process of regeneration of near-wall structures is observed. This process is composed of three distinct phases: formation of streaks by streamwise vortices, breakdown of the streaks, and regeneration of the streamwise vortices. Each phase sets the stage for the next, and these processes are analysed in detail. The most novel results concern vortex regeneration, which is found to be a direct result of the breakdown of streaks that were originally formed by the vortices, and particular emphasis is placed on this process. The spanwise width of the computational domain corresponds closely to the typically observed spanwise spacing of near-wall streaks. When the width of the domain is further reduced, turbulence is no longer sustained. It is suggested that the observed spacing arises because the time scales of streak formation, breakdown and vortex regeneration become mismatched when the streak spacing is too small, and the regeneration cycle at that scale is broken.


2010 ◽  
Vol 656 ◽  
pp. 530-539 ◽  
Author(s):  
S. JAKIRLIĆ ◽  
J. JOVANOVIĆ

A novel formulation of the wall boundary conditions relying on the asymptotic behaviour of the Taylor microscale λ and its relationship to the homogeneous part of the viscous dissipation rate of the kinetic energy of turbulence εh=5νq2/λ2, applicable to near-wall turbulence, is examined. The linear dependence of λ on the wall distance in close proximity to the solid surface enables the wall-closest grid node to be positioned immediately below the edge of the viscous sublayer, leading to a substantial coarsening of the grid resolution. This approach provides bridging of a major portion of the viscous sublayer, higher grid flexibility and weaker sensitivity against the grid non-uniformities in the near-wall region. The performance of the proposed formulation was checked against available direct numerical simulation databases of complex wall-bounded flows featured by swirl and separation.


2019 ◽  
Vol 874 ◽  
pp. 606-638 ◽  
Author(s):  
Patrick Doohan ◽  
Ashley P. Willis ◽  
Yongyun Hwang

An inner-scaled, shear stress-driven flow is considered as a model of independent near-wall turbulence as the friction Reynolds number $Re_{\unicode[STIX]{x1D70F}}\rightarrow \infty$. In this limit, the model is applicable to the near-wall region and the lower part of the logarithmic layer of various parallel shear flows, including turbulent Couette flow, Poiseuille flow and Hagen–Poiseuille flow. The model is validated against damped Couette flow and there is excellent agreement between the velocity statistics and spectra for the wall-normal height $y^{+}<40$. A near-wall flow domain of similar size to the minimal unit is analysed from a dynamical systems perspective. The edge and fifteen invariant solutions are computed, the first discovered for this flow configuration. Through continuation in the spanwise width $L_{z}^{+}$, the bifurcation behaviour of the solutions over the domain size is investigated. The physical properties of the solutions are explored through phase portraits, including the energy input and dissipation plane, and streak, roll and wave energy space. Finally, a Reynolds number is defined in outer units and the high-$Re$ asymptotic behaviour of the equilibria is studied. Three lower branch solutions are found to scale consistently with vortex–wave interaction (VWI) theory, with wave forcing localising around the critical layer.


2016 ◽  
Vol 796 ◽  
pp. 417-436 ◽  
Author(s):  
A. Cimarelli ◽  
E. De Angelis ◽  
J. Jiménez ◽  
C. M. Casciola

The present work describes the multidimensional behaviour of scale-energy production, transfer and dissipation in wall-bounded turbulent flows. This approach allows us to understand the cascade mechanisms by which scale energy is transmitted scale-by-scale among different regions of the flow. Two driving mechanisms are identified. A strong scale-energy source in the buffer layer related to the near-wall cycle and an outer scale-energy source associated with an outer turbulent cycle in the overlap layer. These two sourcing mechanisms lead to a complex redistribution of scale energy where spatially evolving reverse and forward cascades coexist. From a hierarchy of spanwise scales in the near-wall region generated through a reverse cascade and local turbulent generation processes, scale energy is transferred towards the bulk, flowing through the attached scales of motion, while among the detached scales it converges towards small scales, still ascending towards the channel centre. The attached scales of wall-bounded turbulence are then recognized to sustain a spatial reverse cascade process towards the bulk flow. On the other hand, the detached scales are involved in a direct forward cascade process that links the scale-energy excess at large attached scales with dissipation at the smaller scales of motion located further away from the wall. The unexpected behaviour of the fluxes and of the turbulent generation mechanisms may have strong repercussions on both theoretical and modelling approaches to wall turbulence. Indeed, actual turbulent flows are shown here to have a much richer physics with respect to the classical notion of turbulent cascade, where anisotropic production and inhomogeneous fluxes lead to a complex redistribution of energy where a spatial reverse cascade plays a central role.


Sign in / Sign up

Export Citation Format

Share Document