Study on SOFC-IGCC Hybrid Power System With High Efficiency

Author(s):  
Liqiang Duan ◽  
Yongping Yang ◽  
Ershu Xu

Due to its high efficiency and good environmental performance, solid oxide fuel cell (SOFC) system is very attractive for future power generation, especially integrated with the conventional power generation system. However, how to effectively integrate SOFC with the conventional thermal power system and build the hybrid system with high efficiency is still a research focus. This paper studies a novel SOFC-IGCC (integrated gasification combined cycle) hybrid power system with high efficiency. On the base of the integration idea of total energy system, a novel SOFC-IGCC hybrid power system is proposed in this paper. The energy conversion mechanism of SOFC from chemical energy to electrical energy is analyzed. The maximum potential of improving the total system performance is also analyzed. The system characteristics of the hybrid system have been studied. The optimal rules of main parameters of hybrid system are revealed. The research results obtained in this paper show that integration with SOFC system will result in a significant performance improve of the total hybrid system. The integration degree of SOFC with IGCC greatly influences the system performance of the hybrid system. Compared with the base IGCC system (the system thermal efficiency is 46%), the efficiency of SOFC-IGCC hybrid system is greatly improved and increased to approximately 52%. The achievements acquired results from this paper will provide a feasible way to develop hybrid power system and valuable information for further study on IGCC system with high efficiency.

2017 ◽  
pp. 1438-1460 ◽  
Author(s):  
Vincent Anayochukwu Ani

Telecommunications industry requires efficient, reliable and cost-effective hybrid power system as alternative to the power supplied by diesel generator. This paper proposed an operational control algorithm that will be used to control and supervise the operations of PV/Wind-Diesel hybrid power generation system for GSM base station sites. The control algorithm was developed in such a way that it coordinates when power should be generated by renewable energy (PV panels and Wind turbine) and when it should be generated by diesel generator and is intended to maximize the use of renewable system while limiting the use of diesel generator. Diesel generator is allocated only when the demand cannot be met by the renewable energy sources including battery bank. The developed algorithm was used to study the operations of the hybrid PV/Wind-Diesel energy system. The control simulation shows that the developed algorithm reduces the operational hours of the diesel generator thereby reducing the running cost of the hybrid energy system as well as the pollutant emissions. With the data collected from the site, a detailed economic and environmental analysis was carried out using micro power optimization software homer. The study evaluates savings associated with conversion of the diesel powered system to a PV/Wind-Diesel hybrid power system.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2781
Author(s):  
Yue Zhou ◽  
Hussein Obeid ◽  
Salah Laghrouche ◽  
Mickael Hilairet ◽  
Abdesslem Djerdir

In order to improve the durability and economy of a hybrid power system composed of a battery and supercapacitors, a control strategy that can reduce fluctuations of the battery current is regarded as a significant tool to deal with this issue. This paper puts forwards a disturbance rejection control strategy for a hybrid power system taking into account the degradation of the battery. First, the degradation estimation of the battery is done by the model-driven method based on the degradation model and Cubature Kalman Filter (CKF). Considering the transient and sinusoidal disturbance from the load in such a hybrid system, it is indispensable to smooth the behavior of the battery current in order to ensure the lifespan of the battery. Moreover, the constraints for the hybrid system should be considered for safety purposes. In order to deal with these demands, a cascaded voltage control loop based on a super twisting controller and proportional integral controller with an anti-windup scheme is designed for regulating the DC bus voltage in an inner voltage loop and supercapacitors’ voltage in an outer voltage loop, respectively. The specific feature of the proposed control method is that it operates like a low-pass filter so as to reduce the oscillations on the DC bus.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Engin

A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.


2020 ◽  
Vol 15 (3) ◽  
pp. 360-367
Author(s):  
Khagendra Bahadur Thapa ◽  
Arbin Maharjan ◽  
Kishor Kaphle ◽  
Kishor Joshi ◽  
Tara Aryal

The adaptation of renewable energy has been increasing in a very encouraging way all over the world. Among various renewable energy resources, wind and solar energy are the promising sources of alternative energy. Wind and solar photovoltaic (PV) have been employed in parallel as a hybrid system for better electricity service. This paper presents a case study and modeling of wind-solar hybrid system in Hriharpur Gadi village, Sindhuli District, Nepal. The hybrid system yields 110kWh of energy per day meeting the village’s electricity demand of 87 kWh per day. Moreover, the hybrid power system with battery storage system is modeled using MATLAB simulator. Further, improvising in the existing modeling has been presented to enhance the efficiency and effectiveness of the system.


2016 ◽  
Vol 67 (4) ◽  
pp. 234-245 ◽  
Author(s):  
Goran Knežević ◽  
Zoran Baus ◽  
Srete Nikolovski

Abstract In this paper short-term planning algorithm for hybrid power system consist of different types of cascade hydropower plants (run-of-the river, pumped storage, conventional), thermal power plants (coal-fired power plants, combined cycle gas-fired power plants) and wind farms is presented. The optimization process provides a joint bid of the hybrid system, and thus making the operation schedule of hydro and thermal power plants, the operation condition of pumped-storage hydropower plants with the aim of maximizing profits on day ahead market, according to expected hourly electricity prices, the expected local water inflow in certain hydropower plants, and the expected production of electrical energy from the wind farm, taking into account previously contracted bilateral agreement for electricity generation. Optimization process is formulated as hourly-discretized mixed integer linear optimization problem. Optimization model is applied on the case study in order to show general features of the developed model.


Author(s):  
Amara Mohamed ◽  
Zablah Abdelkader ◽  
Bouanane Abdelkrim

The absence of electricity in rural areas is one of the major challenges faced by many developing countries like Algeria. This work has been devoted to the design of an off-grid renewable hybrid power system for a rural village in the region of Tindouf located in south Algeria. The main objective of this study is to determine the optimum size of the hybrid power system able to fulfill the requirements of 709 kWh/day primary load with 66 kW peak load for a remote area of 230 households. This study is based on simulation and optimization of a (PV-Diesel) and (PV-GPL) hybrid system with a technical-economic analysis. Simulation results showed that electrifying using a PV/GPL generator hybrid system is more advantageous when compared to the PV/diesel generator hybrid system as it has lower operating costs and emissions. The comparison is based on per unit cost of electrical energy production, operating cost of conventional fossil fuel-based energy sources and pollutants gases reduction.


2014 ◽  
Vol 3 (1) ◽  
pp. 101-120 ◽  
Author(s):  
Vincent Anayochukwu Ani

Telecommunications industry requires efficient, reliable and cost-effective hybrid power system as alternative to the power supplied by diesel generator. This paper proposed an operational control algorithm that will be used to control and supervise the operations of PV/Wind-Diesel hybrid power generation system for GSM base station sites. The control algorithm was developed in such a way that it coordinates when power should be generated by renewable energy (PV panels and Wind turbine) and when it should be generated by diesel generator and is intended to maximize the use of renewable system while limiting the use of diesel generator. Diesel generator is allocated only when the demand cannot be met by the renewable energy sources including battery bank. The developed algorithm was used to study the operations of the hybrid PV/Wind-Diesel energy system. The control simulation shows that the developed algorithm reduces the operational hours of the diesel generator thereby reducing the running cost of the hybrid energy system as well as the pollutant emissions. With the data collected from the site, a detailed economic and environmental analysis was carried out using micro power optimization software homer. The study evaluates savings associated with conversion of the diesel powered system to a PV/Wind-Diesel hybrid power system.


Author(s):  
David E. Lee ◽  
Bill Nesmith ◽  
Terry Hendricks ◽  
Juan Cepeda-Rizo ◽  
Michael Petach ◽  
...  

The FSPOT-X Project, focused on maximizing exergy generated from AM1.5 sunlight, targets an overall system efficiency of >35%. The objective hybrid power system will deliver grid-ready AC power while simultaneously providing thermal energy storage for dispatchable electrical power generation in post sunset conditions. The challenging system-level requirements flow-down critical temperature differential and thermal transport requirements to multiple system components and their interfaces. By integrating and demonstrating multiple technologies, the FSPOT-X hybrid power system seeks to efficiently convert photons to electrons maximizing heat transfer efficiency across system element interfaces. These include: I1) capturing all incident sunlight from the solar concentrator in a receiver cavity to maximize energy generation from the CPV cells, I2) extracting PV thermalization heat from the receiver and into the reflux chamber, I3) moving heat from the reflux chamber through the thermal transfer interface, I4) using the thermal transfer interface to shift heat into the TAPC’s hot heat exchanger, I5) storing excess unused heat in phase change material, and I6) disposal of waste heat at the system level. For each of these thermal interfaces, effective and efficient technical means are being used and applied in order to maximize overall system efficiency for delivery of a next generation cost-effective and market-ready solar power system.


2013 ◽  
Vol 281 ◽  
pp. 554-562 ◽  
Author(s):  
Ting Ting Li ◽  
Guo Qiang Xu ◽  
Yong Kai Quan

Solar energy utilization has met some complicated problems in recent years, like energy storage, solar thermal power generation dispatchability and grid connection etc. The concept of hybrid solar power systems proposed in early researches has extended the conditions of exploiting solar power generation technology,this paper reviews hybrid solar power system technologies in the past 40 years. According to different complementary energy resources, hybrid solar/renewable energy and solar/conventional energy systems have been discussed in this paper. Particularly, this article presents the thermal and economic performances of Integrated Solar Combined Cycle System (ISCCS).


Sign in / Sign up

Export Citation Format

Share Document