Suction-Side Gill-Region Film Cooling: Effects of Hole Shape and Orientation on Adiabatic Effectiveness and Heat Transfer Coefficient

Author(s):  
Justin Chappell ◽  
Phil Ligrani ◽  
Sri Sreekanth ◽  
Terry Lucas

The performance of suction-side gill region film cooling is investigated using the University of Utah Transonic Wind Tunnel and a simulated turbine vane in a two-dimensional cascade. The effects of film cooling hole orientation, shape, and number of rows, and their resulting effects on thermal film cooling characteristics are considered for four different hole configurations: round axial (RA), shaped axial (SA), round radial (RR), and round compound (RC). The mainstream Reynolds number based on axial chord is 500,000, exit Mach number is 0.35, and the tests are conducted using the first row of holes only, second row of holes only, or both rows of holes at blowing ratios of 0.6 and 1.2. Carbon dioxide is used as the injectant to achieve density ratios of 1.73 to 1.92 similar to values present in operating gas turbine engines. A mesh grid is used to give a magnitude of longitudinal turbulence intensity of 5.7 percent at the inlet of the test section. Results show that the best overall protection over the widest range of blowing ratios and streamwise locations is provided by either the RC holes, or the RR holes. This result is particularly significant because the RR hole arrangement, which has lower manufacturing costs compared with the RC and SA arrangements, produces better or equivalent levels of performance in terms of magnitudes of adiabatic film cooling effectiveness and heat transfer coefficient. Such improved performance (relative to RA and SA holes) is likely mostly a result of compound angles, which increases lateral spreading. As such, the present results indicate that compound angle appears to be more effective than hole shaping in improving thermal protection relative to that given by RA holes.

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Justin Chappell ◽  
Phil Ligrani ◽  
Sri Sreekanth ◽  
Terry Lucas

The performance of suction-side gill region film cooling is investigated using the University of Utah transonic wind tunnel and a simulated turbine vane in a two-dimensional cascade. The effects of film cooling hole orientation, shape, and number of rows, and their resulting effects on thermal film cooling characteristics, are considered for four different hole configurations: round axial (RA), shaped axial (SA), round radial (RR), and round compound (RC). The mainstream Reynolds number based on axial chord is 500,000, the exit Mach number is 0.35, and the tests are conducted using the first row of holes only, second row of holes only, or both rows of holes at blowing ratios of 0.6 and 1.2. Carbon dioxide is used as the injectant to achieve density ratios of 1.73 to 1.92 similar to values present in operating gas turbine engines. A mesh grid is used to give a magnitude of longitudinal turbulence intensity of 5.7% at the inlet of the test section. Results show that the best overall protection over the widest range of blowing ratios and streamwise locations is provided by either the RC holes or the RR holes. This result is particularly significant because the RR hole arrangement, which has lower manufacturing costs compared with the RC and SA arrangements, produces better or equivalent levels of performance in terms of magnitudes of adiabatic film cooling effectiveness and heat transfer coefficient. Such improved performance (relative to RA and SA holes) is most likely a result of compound angles, which increases lateral spreading. As such, the present results indicate that compound angles appear to be more effective than hole shaping in improving thermal protection relative to that given by RA holes.


Author(s):  
Cun-liang Liu ◽  
Hui-ren Zhu ◽  
Jiang-tao Bai ◽  
Du-chun Xu

Film cooling performances of two kinds of converging slot-hole (console) with different exit-entry area ratios have been measured using a new transient liquid crystal measurement technique which can process the nonuniform initial wall temperature. Four momentum ratios are tested. The film cooling effectiveness distribution features are similar for the two consoles under all the momentum ratios. Consoles with smaller exit-entry area ratio produce higher cooling effectiveness. And the laterally averaged cooling effectiveness results show that the best momentum ratio for both consoles’ film cooling effectiveness distribution is around 2. For both consoles, the heat transfer in the midspan region is stronger than that in the hole centerline region in the upstream, but gradually becomes weaker as flowing downstream. With the momentum ratio increasing, the normalized heat transfer coefficient h/ho of both consoles increases. In the upstream, heat transfer coefficient of console with small exit-entry area ratio is higher. But in the downstream, the jets’ turbulence and the couple vortices play notable elevating effect on the heat transfer coefficient for large exit-entry area ratio case, especially under small momentum ratios. Consoles with smaller exit-entry area ratio provide better thermal protection because of higher cooling effectiveness. And the distributions of heat flux ratio are similar with those of cooling effectiveness because the influence of η on q/q0 is larger. For the consoles, smaller exit-entry area ratios produce lower discharge coefficients when the pressure variation caused by the hole shaped is regarded as flow resistant.


Author(s):  
Huitao Yang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han ◽  
Hee-Koo Moon

Numerical simulations were performed to predict the film cooling effectiveness and the associated heat transfer coefficient on the leading edge of a rotating blade in a 1-1/2 turbine stage using a Reynolds stress turbulence model together with a non-equilibrium wall function. Simulations were performed for both the design and off-design conditions to investigate the effects of blade rotation on the leading edge film cooling effectiveness and heat transfer coefficient distributions. It was found that the tilt stagnation line on the leading edge of rotor moves from the pressure side to the suction side, and the instantaneous coolant streamlines shift from the suction side to the pressure side with increasing rotating speed. This trend was supported by the experimental results. The result also showed that the heat transfer coefficient increases, but film cooling effectiveness decreases with increasing rotating speed. In addition, the unsteady characteristics of the film cooling and heat transfer at different time phases, as well as different rotating speeds, were also reported.


Author(s):  
Dong Ho Rhee ◽  
Youn Seok Lee ◽  
Hyung Hee Cho

An experimental study has been conducted to measure the local film-cooling effectiveness and the heat transfer coefficient for a single row of rectangular-shaped holes. The holes have a 35° inclination angle with 3 hole diameter spacing of rectangular cross-sections. Four different cooling hole shapes such as a straight rectangular hole, a rectangular hole with laterally expanded exit, a circular hole and a two-dimensional slot are tested. The rectangular cross-section has the aspect ratio of 2 at the hole inlet with the hydraulic diameter of 10 mm. The area ratio of the exit to the hole inlet is 1.8 for the rectangular hole with expanded exit, which is similar to a two-dimensional slot. A thermochromic liquid crystals technique is applied to determine adiabatic film cooling effectiveness values and heat transfer coefficients on the test surface. Both film cooling effectiveness and heat transfer coefficient are measured for various blowing rates and compared with the results of the cylindrical holes and the two-dimensional slot. The flow patterns inside and downstream of holes are calculated numerically by a commercial package. The results show that the rectangular holes provide better performance than the cylindrical holes. For the rectangular holes with laterally expanded exit, the penetration of jet is reduced significantly, and the higher and more uniform cooling performance is obtained even at relatively high blowing rates. The reason is that the rectangular hole with expanded exit reduces momentum of coolant and promotes the lateral spreading like a two-dimensional slot.


Author(s):  
D. E. Smith ◽  
J. V. Bubb ◽  
O. Popp ◽  
H. Grabowski ◽  
T. E. Diller ◽  
...  

Experiments were performed in a transonic cascade wind tunnel to investigate the film effectiveness and heat transfer coefficient on the suction side of a high-turning turbine rotor blade. The coolant scheme consisted of six rows of staggered, discrete cooling holes on and near the leading edge of the blade in a showerhead configuration. Air was cooled in order to match the density ratios found under engine conditions. Six high-frequency heat flux gauges were installed downstream of the cooling holes on the suction side of the blade. Experiments were performed with and without film and the coolant to freestream total pressure ratio was varied from 1.02 to 1.19. In order to simulate real engine flow conditions, the exit Mach number was set to 1.2 and the exit Reynolds number was set to 5×106. The freestream turbulence was approximately 1%. The heat transfer coefficient was found to increase with the addition of film cooling an average of 14% overall and to a maximum of 26% at the first gauge location. The average film cooling effectiveness over the gauge locations was 25%. Both the heat transfer coefficient and the film cooling effectiveness were found to have only a weak dependence upon the coolant to freestream total pressure ratio at the gauge locations used in this study.


Author(s):  
Santosh Abraham ◽  
Alexander Ritchie Navin ◽  
Srinath V. Ekkad

Film cooling effectiveness depends on several geometrical parameters like location on the airfoil, exit shape, orientation and arrangement of the holes. The focus of this investigation is to propose and explore a new film cooling hole geometry. The adiabatic film cooling effectiveness is determined experimentally, downstream of the exit of the film cooling holes on a flat plate using a steady state IR thermography technique. Coolant holes that are perpendicular to the direction of flow detach from the surface and enhance the heat transfer coefficient on the turbine blade without providing any coolant coverage, while angled holes along the mainstream direction result in superior film cooling effectiveness and lower heat transfer to the surface. The objective of this study is to examine the external cooling effects using coolant holes that are a combination of both angled shaped holes as well as perpendicular holes. The inlet of the coolant hole is kept perpendicular to the direction of flow to enhance the internal side heat transfer coefficient and the exit of the coolant hole is expanded and angled along the mainstream flow to prevent the coolant jet from lifting off from the blade external surface. A total of six different cases with variations in exit shape geometry are investigated at different blowing ratios (BR varying from 0.5 to 2.0). Results suggest that the film cooling effectiveness values obtained from these geometries are comparable with those of conventional angled holes. With the added advantage of enhanced heat transfer coefficient on the coolant channel internal side, as proven earlier by Byerley [3], overall superior cooling is accomplished. Furthermore this shaped hole can be made using the same technology being presently used in the industry.


Author(s):  
Onieluan Tamunobere ◽  
Sumanta Acharya

This is the first in a two-part series of an experimental film cooling study on a gas turbine shroud with a blade rotation speed of 1200 RPM. In this part of the study, the effect of forward, backward and lateral injection on the shroud heat transfer and cooling behavior is investigated. The shroud with a staggered hole arrangement and a hole pitch to diameter ratio of 4.0, consists of holes angled at 45° to the surface. Four hole configurations using inline and lateral coolant injection methods are utilized in this study. The first configuration consists of streamwise and forward facing holes inclined at 45 degrees to the surface (ϕ = 0°). The second configuration consists of backward facing holes also inclined at 45 degrees to the surface (ϕ = 180°). The third and fourth configurations consist of lateral injection with a surface angle of 45 degrees in the direction of blade rotation (ϕ = 90°) and opposite the direction of blade rotation (ϕ = 270°), respectively. The heat transfer coefficient is reported for the no-coolant case and measurements of the heat transfer coefficient and film cooling effectiveness are reported for each configuration at nominal blowing ratios of 0.5, 1.0, 1.5 and 2.0 using liquid crystal thermography. The results show that in-line injection performs better than lateral injection at low blowing ratios and the reverse is true at higher blowing ratios. Backward injection does show higher laterally averaged effectiveness with increased spreading in the vicinity of the coolant holes than forward injection. With a compact coolant hole arrangement, this results in higher area averaged effectiveness for backward injection than forward injection. With increased lateral spreading of the coolant in the hole region, lateral injection results in higher peak effectiveness values than inline injection. Nevertheless, lateral injection does not have the axial penetration of inline injection and as such leaves regions of the shroud downstream of the coolant holes vulnerable.


Author(s):  
Diganta Narzary ◽  
Kevin Liu ◽  
Je-Chin Han ◽  
Shantanu Mhetras ◽  
Kenneth Landis

Film-cooling and heat transfer characteristics of a gas turbine blade tip with a suction side rail was investigated in a stationary 3-blade rectilinear cascade. Mounted at the end of a blow-down facility the cascade operated at inlet and exit Mach numbers of 0.29 and 0.75, respectively. The rail was marginally offset from the suction side edge of the tip and extended from the leading to the trailing edge. A total of 17 film-cooling holes were placed along the near-tip pressure side surface and 3 on the near-tip leading edge surface with the objective of providing coolant to the tip. The tip surface itself did not carry any film-cooling holes. Relatively high blowing ratios of 2.0, 3.0, 4.0, and 4.5 and three tip gaps of 0.87%, 1.6%, and 2.3% of blade span made up the test matrix. Pressure sensitive paint (PSP) and Thermo-Chromic Liquid Crystal (TLC) were the experimental techniques employed to measure film-cooling effectiveness and heat transfer coefficient, respectively. Results indicated that when the tip gap was increased, film-cooling effectiveness on the tip surface decreased and heat transfer to the tip surface increased. On the other hand, when the blowing ratio was increased, film effectiveness increased but the effect on heat transfer coefficient was relatively small. The highest heat transfer coefficient levels were found atop the suction side rail, especially in the downstream two-thirds of its length whereas the lowest levels were found on the tip floor in the widest section of the blade.


Author(s):  
Mats Kinell ◽  
Esa Utriainen ◽  
Hossein Nadali Najafabadi ◽  
Matts Karlsson ◽  
Botond Barabas

In order to protect a solid surface exposed to high temperature gaseous flows, e.g. gas turbines and rocket engines, a second gas at lower temperature may be introduced into the hot boundary layer, i.e. one obtains a three temperature problem. The impact of the film cooling on a prototype vane due to variation in blowing ratio, the shape of the hole-outlet and position has been experimentally investigated. The semi-infinite and low conductive test object, initially at a uniform temperature, was exposed to a sudden step change in main flow temperature and a time-resolved surface temperature was measured using an IR camera. By assuming constant values of the heat transfer coefficient and the film cooling effectiveness over time, the heat equation was solved using least squares. The prototype vane was tested for different film cooling row positions on the pressure and suction side. Both cylindrical as well as fan shaped holes were investigated with and without showerhead cooling. The resulting heat transfer coefficient and film cooling effectiveness on the pressure side is compared to flat plate studies and to the results from the suction side. Also, the applicability of using superposition on showerhead cooling and on single/double rows is investigated. Furthermore, the results are compared to other published airfoil film cooling experiments and to CFD analysis for which conclusions are drawn on quantitative and qualitative capabilities of this tool.


Author(s):  
Bo-lun Zhang ◽  
Hui-ren Zhu ◽  
Cun-liang Liu ◽  
Jian-sheng Wei

Abstract The film cooling characteristics of the transverse trench (TT) and the double-wave trench (DWT) were numerically studied by using Reynolds-averaged Navier–Stokes simulations with realizable k–ɛ turbulence model and enhanced wall treatment. The experiment was used to validate the accuracy of numerical simulation. The film cooling effectiveness and the heat transfer coefficient and the heat flux ratio of the double-wave trench are investigated, and the distribution of temperature field and flow field were analyzed. The results show that the double-wave trench can effectively improve the uniformity of jet compared with the transverse trench. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient of the double-wave trench increases. The span-wise average heat flux ratio of the trench width W = 1.4D condition is lower than that of the other two trenches, so it has the best thermal protection effect of film cooling on the wall.


Sign in / Sign up

Export Citation Format

Share Document