Use of the Adiabatic Wall Temperature in Film Cooling to Predict Wall Heat Flux and Temperature

Author(s):  
Katharine L. Harrison ◽  
David G. Bogard

The adiabatic wall temperature is generally assumed to be the driving temperature for heat transfer into conducting gas turbine airfoils. This assumption was analyzed through a series of FLUENT simulations using the standard k-ω turbulence model. Adiabatic effectiveness and heat transfer experiments commonly documented in literature were mimicked computationally. The results were then used to predict both the heat flux and temperature distributions on a conducting flat plate wall and the predictions were compared to the heat flux and temperature distributions found through a flat plate conjugate heat transfer simulation. The heat flux analysis was compared to previously published work using the realizable k-ε turbulence model. The same conclusions could be drawn for both turbulence models despite differences in simulated adiabatic effectiveness and heat transfer coefficient distributions. Agreement between heat flux predictions and the heat flux from the conjugate simulations correlated well with how closely the adiabatic wall temperature approximated the over-riding gas driving temperature for heat transfer into the wall. In general, the driving temperature for heat transfer was represented well by the adiabatic wall temperature and the heat flux was well predicted. However, in some locations, the heat flux was over-predicted by up to 300%. Since wall temperature is ultimately the parameter of interest for industrial gas turbine design, the conducting flat plate temperature distribution was also predicted. This was done by using the adiabatic effectiveness and heat transfer coefficients found with the standard k-ω turbulence model as boundary conditions in a three dimensional solid conduction simulation. Then metal temperatures predicted in the solid conduction simulation were compared to those found through conjugate analysis. Despite deviations in predicted heat flux and the conjugate model heat flux of up to 300%, deviations in the predicted and the conjugate model non-dimensional metal temperatures were less than 10%. Thus, use of the adiabatic wall temperature as the driving temperature for heat transfer to predict temperature on the surface of a conducting wall results in relatively small errors.

Author(s):  
Lei Zhao ◽  
Ting Wang

In film cooling heat transfer analysis, one of the core concepts is to deem film cooled adiabatic wall temperature (Taw) as the driving potential for the actual heat flux over the film-cooled surface. Theoretically, the concept of treating Taw as the driving temperature potential is drawn from compressible flow theory when viscous dissipation becomes the heat source near the wall and creates higher wall temperature than in the flowing gas. But in conditions where viscous dissipation is negligible, which is common in experiments under laboratory conditions, the heat source is not from near the wall but from the main hot gas stream; therefore, the concept of treating the adiabatic wall temperature as the driving potential is subjected to examination. To help investigate the role that Taw plays, a series of computational simulations are conducted under typical film cooling conditions over a conjugate wall with internal flow cooling. The result and analysis support the validity of this concept to be used in the film cooling by showing that Taw is indeed the driving temperature potential on the hypothetical zero wall thickness condition, ie. Taw is always higher than Tw with underneath (or internal) cooling and the adiabatic film heat transfer coefficient (haf) is always positive. However, in the conjugate wall cases, Taw is not always higher than wall temperature (Tw), and therefore, Taw does not always play the role as the driving potential. Reversed heat transfer through the airfoil wall from downstream to upstream is possible, and this reversed heat flow will make Tw > Taw in the near injection hole region. Yet evidence supports that Taw can be used to correctly predict the heat flux direction and always result in a positive adiabatic heat transfer coefficient (haf). The results further suggest that two different test walls are recommended for conducting film cooling experiments: a low thermal conductivity material should be used for obtaining accurate Taw and a relative high thermal conductivity material be used for conjugate cooling experiment. Insulating a high-conductivity wall will result in Taw distribution that will not provide correct heat flux or haf values near the injection hole.


Author(s):  
Zhiduo Wang ◽  
Wenhao Zhang ◽  
Zhaofang Liu ◽  
Chen Zhang ◽  
Zhenping Feng

In this paper, unsteady RANS simulations were performed at two hot streak (HS) circumferential positions with inlet turbulence intensity of 5% and 20%. The interacted HS and high mainstream turbulence effects on endwall heat transfer characteristics of a high-pressure (HP) turbine were discussed by analyzing the flow structures and presenting the endwall adiabatic wall temperature, heat transfer coefficient (HTC) and heat flux distributions. The results indicate that both the wall temperature and HTC increase with the turbulence intensity at most stator endwall regions. In addition, the increase of wall temperature plays a greater role than HTC of influencing the wall heat flux. However, higher turbulence intensity decreases the intensity of the stator passage horse-shoe vortex, also the corresponding region HTC and heat flux are reduced. In rotor passage, the variation of HS circumferential position would alter the hub and casing endwall temperature, however, the discrepancy is weakened at higher turbulence. The elevated HS attenuation at higher turbulence results in temperature augmentation at the leading edge of rotor hub and casing endwalls, while temperature decrease after 50% axial chord, thus obtains more uniform temperature distributions on the endwalls. However, the rotor endwall HTC is only augmented significantly at the leading edge on hub endwall, and pressure side and downstream of trailing edge on casing endwall. Variation of HTC and adiabatic wall temperature jointly determines the rotor hub and casing endwall heat flux, and the temperature variation has dominant effects in the most regions. In general, the variation of adiabatic wall temperature and HTC should be considered simultaneously when analyzing the turbine endwall heat transfer characteristics.


Author(s):  
S. Lavagnoli ◽  
C. De Maesschalck ◽  
G. Paniagua

Turbine rotor tips and casings are vulnerable to mechanical failures due to the extreme thermal loads they undergo during engine operation. In addition to the heat flux variations during the transient phase, high-frequency unsteadiness occurs at every rotor passage, with amplitude dependent on the tip gap. The development of appropriate predictive tools and cooling schemes requires the precise understanding of the heat transfer mechanisms. The present paper analyzes the nature of the overtip flow in transonic turbine rotors running at tight clearances, and explores a methodology to determine the relevant flow parameters that model the heat transfer. Steady-state three-dimensional Reynolds-Averaged Navier-Stokes calculations were performed to simulate engine-like conditions considering two rotor tip gaps, 0.1% and 1% of the blade span. At tight tip clearance, the adiabatic wall temperature is not anymore independent of the solid thermal boundary conditions. The adiabatic wall temperature predicted with the linear Newton’s cooling law was observed to rise to non-physical levels in certain regions within the rotor tip gap, resulting in unreliable convective heat transfer coefficients. This paper investigates different approaches to estimate the relevant flow parameters that drive the heat transfer. The present study allows experimentalists to retrieve information on the gap flow temperature and convective heat transfer coefficient based on the use of wall heat flux measurements. Such approach is required to improve the accuracy in the evaluation of the heat transfer data while enhancing the understanding of tight-clearance overtip flows.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Sergio Lavagnoli ◽  
Cis De Maesschalck ◽  
Guillermo Paniagua

Turbine rotor tips and casings are vulnerable to mechanical failures due to the extreme thermal loads they undergo during engine service. In addition to the heat flux variations during the engine transient operation, periodic unsteadiness occurs at every rotor passage, with amplitude dependent on the tip gap. The development of appropriate predictive tools and cooling schemes requires the precise understanding of the heat transfer mechanisms. The present paper analyses the nature of the overtip flow in transonic turbine rotors running at tight clearances and explores a methodology to determine the relevant flow parameters that model the heat transfer. Steady-state three-dimensional Reynolds-averaged Navier–Stokes (RANS) calculations were performed to simulate engine-like conditions considering two rotor tip gaps, 0.1% and 1%, of the blade span. At tight tip clearance, the adiabatic wall temperature is no longer independent of the solid thermal boundary conditions. The adiabatic wall temperature predicted with the linear Newton's cooling law was observed to rise to unphysical levels in certain regions within the rotor tip gap, resulting in unreliable convective heat transfer coefficients (HTCs). This paper investigates different approaches to estimate the relevant flow parameters that drive the heat transfer. A novel four-coefficient nonlinear cooling law is proposed to model the effects of temperature-dependent gas properties and of the heat transfer history. The four-parameter correlation provided reliable estimates of the convective heat transfer descriptors for the 1% tip clearance case, but failed to model the tip heat transfer of the 0.1% tip gap rotor. The present study allows experimentalists to retrieve information on the gap flow temperature and convective HTC based on the use of wall heat flux measurements. The use of nonlinear cooling laws is sought to improve the evaluation of the rotor heat transfer data while enhancing the understanding of tight-clearance overtip flows.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Lei Zhao ◽  
Ting Wang

In film cooling heat transfer analysis, one of the core concepts is to deem film cooled adiabatic wall temperature (Taw) as the driving potential for the actual heat flux over the film-cooled surface. Theoretically, the concept of treating Taw as the driving temperature potential is drawn from compressible flow theory when viscous dissipation becomes the heat source near the wall and creates higher wall temperature than in the flowing gas. But in conditions where viscous dissipation is negligible, which is common in experiments under laboratory conditions, the heat source is not from near the wall but from the main hot gas stream; therefore, the concept of treating the adiabatic wall temperature as the driving potential is subjected to examination. To help investigate the role that Taw plays, a series of computational simulations are conducted under typical film cooling conditions over a conjugate wall with internal flow cooling. The result and analysis support the validity of this concept to be used in the film cooling by showing that Taw is indeed the driving temperature potential on the hypothetical zero wall thickness condition, i.e., Taw is always higher than Tw with underneath (or internal) cooling and the adiabatic film heat transfer coefficient (haf) is always positive. However, in the conjugate wall cases, Taw is not always higher than wall temperature (Tw), and therefore, Taw does not always play the role as the driving potential. Reversed heat transfer through the airfoil wall from downstream to upstream is possible, and this reversed heat flow will make Tw > Taw in the near injection hole region. Yet evidence supports that Taw can be used to correctly predict the heat flux direction and always result in a positive adiabatic heat transfer coefficient (haf). The results further suggest that two different test walls are recommended for conducting film cooling experiments: a low thermal conductivity material should be used for obtaining accurate Taw and a relative high thermal conductivity material be used for conjugate cooling experiment. Insulating a high-conductivity wall will result in Taw distribution that will not provide correct heat flux or haf values near the injection hole.


Author(s):  
Laurene D. Dobrowolski ◽  
David G. Bogard ◽  
Silvia Ravelli

This paper focuses on the legitimacy of using conventional predictions, based on adiabatic wall temperature (Taw) and heat transfer coefficient (HTC) augmentation, of heat flux into a film cooled leading edge. To answer this question, the heat flux predicted using Taw was compared to the heat flux into a conducting leading edge. The study used numerical simulations with the k-ε turbulence model of FLUENT. The model simulated was a three-row leading edge with one row of holes on the stagnation line and two additional rows located at ±25°, which has been experimentally studied extensively. The adiabatic wall temperature was obtained from an adiabatic simulation. External heat transfer coefficients were determined from a constant heat flux simulation using a density ratio of DR = 1.0, as is commonly done experimentally. A conjugate heat transfer simulation was also run to give the surface temperature and heat flux into the conducting leading edge. Overall, the heat transfer was well predicted with the use of Taw and HTC augmentation. However, between the holes, conventional predictions of heat transfer were poor, with disparity up to 30% when compared with the conducting wall heat flux obtained from the conjugate heat transfer simulation. Thermal boundary layer profiles were used to understand the disparity between the heat fluxes obtained from the conventional prediction and the conducting wall simulation.


Author(s):  
Ali A. Ameri ◽  
David L. Rigby ◽  
Erlendur Steinthorsson ◽  
James Heidmann ◽  
John C. Fabian

The effect of the upstream wake on the blade heat transfer has been numerically examined. The geometry and the flow conditions of the first stage turbine blade of GE’s E3 engine with a tip clearance equal to 2% of the span was utilized. Based on numerical calculations of the vane, a set of wake boundary conditions were approximated which were subsequently imposed upon the downstream blade. This set consisted of the momentum and thermal wakes as well as the variation in modeled turbulence quantities of turbulence intensity and the length scale. Using a one blade periodic domain, the distributions of unsteady heat transfer rate on the turbine blade and its tip, as affected by the wake, were determined. Such heat transfer coefficient distribution was computed using the wall heat flux and the adiabatic wall temperature to desensitize the heat transfer coefficient to the wall temperature. For the determination of the wall heat flux and the adiabatic wall temperatures, two set of computations were required. The results were used in a phase-locked manner to compute the unsteady or steady heat transfer coefficients. It has been found that the unsteady wake has some effect on the distribution of the time averaged heat transfer coefficient on the blade and that this distribution is different from the distribution that is obtainable from a steady computation. This difference was found to be as large as 20 percent of the average heat transfer on the blade surface. On the tip surface, this difference is comparatively smaller and can be as large as four percent of the average.


2011 ◽  
Vol 383-390 ◽  
pp. 811-815
Author(s):  
Hu Gen Ma ◽  
Jian Mei Bai ◽  
Rong Jian Xie ◽  
Wen Jing Tu

In this paper, the boiling heat transfer test rig was designed and built, while the characteristics of boiling Heat Transfer of refrigerants in micro-channel was researched. The wall temperature of micro-channel was measured by TH5104 Infrared thermography. The results showed that there were obvious variations for wall temperature of micro-channel along the axial direction when boiling heat transfer occurred in the micro-channel. The temperature distribution affected obviously by the heat flux, mass flow rate; vapor quality and heat transfer model.


Sign in / Sign up

Export Citation Format

Share Document