Part-Span Application of Sweep and Lean at Turbine Blade Tips: A Low Speed Experimental Cascade Study

Author(s):  
Bhaskar Roy ◽  
Anoop Prajapati

This study is aimed at exploring the possibility of aerodynamic performance improvement by providing part-span forward sweep and lean near the tip regions of axial flow turbine rotor blades. Such aerodynamic benefits may have application potential in the uncooled LPT blades. The curved forward sweep and curved lean have been provided to 25% of the blade span near the tip in cascade, Three sets of cascades of the same turbine airfoil have been studied — (i) straight blades, (ii) part span swept blades and (iii) part span leaned blades. The cascade results show that swept blade gives a recovery of 20–25% loss in blade performance near the tip region at 0° and 10° incidences. The swept and leaned blades suppress the Cp perturbations (as seen in straight blades) at 0° and at 10° incidences, on the suction surfaces of turbine blade cascades. Comparatively the leaned blades show blade unloading, largely on the pressure surface, which leads to some performance reduction. The wake loss study shows reduction in wake losses for swept turbine blade at near tip region. The end-wall boundary layer measurements across the open tips demonstrate some aerodynamic improvement, near the tip regions, for parts-span swept and leaned blades.

1992 ◽  
Vol 114 (2) ◽  
pp. 392-397 ◽  
Author(s):  
M. Aoki ◽  
K. Yamamoto

The cause of inlet reverse flow was studied in axial flow turbo machinery. A helical inducer, in which neither stall nor significant radial flow was observed, was selected as the experimental model. The flow between the blades was measured by a laser-Doppler velocimeter and investigated using the end-wall boundary-layer theory. Results showed that the inlet reverse flow occurs adjacent to the pressure surface between the blades in the vicinity of the casing wall. Inlet reverse flow, caused by a momentum defect in the axial direction in the boundary layer on the casing wall and a significant pressure gradient in the axial direction adjacent to the inlet blade pressure surface at partial flow rate, was found even though there was no significant radial flow or stall. In this paper, radial flow is defined as flow that causes a nonnegligible increase in the pressure on the casing wall.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4045
Author(s):  
David Menéndez Arán ◽  
Ángel Menéndez

A design method was developed for automated, systematic design of hydrokinetic turbine rotor blades. The method coupled a Computational Fluid Dynamics (CFD) solver to estimate the power output of a given turbine with a surrogate-based constrained optimization method. This allowed the characterization of the design space while minimizing the number of analyzed blade geometries and the associated computational effort. An initial blade geometry developed using a lifting line optimization method was selected as the base geometry to generate a turbine blade family by multiplying a series of geometric parameters with corresponding linear functions. A performance database was constructed for the turbine blade family with the CFD solver and used to build the surrogate function. The linear functions were then incorporated into a constrained nonlinear optimization algorithm to solve for the blade geometry with the highest efficiency. A constraint on the minimum pressure on the blade could be set to prevent cavitation inception.


Author(s):  
Özhan H. Turgut ◽  
Cengiz Camcı

Three different ways are employed in the present paper to reduce the secondary flow related total pressure loss. These are nonaxisymmetric endwall contouring, leading edge (LE) fillet, and the combination of these two approaches. Experimental investigation and computational simulations are applied for the performance assessments. The experiments are carried out in the Axial Flow Turbine Research Facility (AFTRF) having a diameter of 91.66cm. The NGV exit flow structure was examined under the influence of a 29 bladed high pressure turbine rotor assembly operating at 1300 rpm. For the experimental measurement comparison, a reference Flat Insert endwall is installed in the nozzle guide vane (NGV) passage. It has a constant thickness with a cylindrical surface and is manufactured by a stereolithography (SLA) method. Four different LE fillets are designed, and they are attached to both cylindrical Flat Insert and the contoured endwall. Total pressure measurements are taken at rotor inlet plane with Kiel probe. The probe traversing is completed with one vane pitch and from 8% to 38% span. For one of the designs, area averaged loss is reduced by 15.06%. The simulation estimated this reduction as 7.11%. Computational evaluation is performed with the rotating domain and the rim seal flow between the NGV and the rotor blades. The most effective design reduced the mass averaged loss by 1.28% over the whole passage at the NGV exit.


Author(s):  
Michael A. Zaccaria ◽  
Budugur Lakshminarayana

The flow field in turbine rotor passages is complex with unsteadiness caused by the aerodynamic interaction of the nozzle and rotor flow fields. The two-dimensional steady and unsteady flow field at midspan in an axial flow turbine rotor has been investigated experimentally using an LDV with emphasis on the interaction of the nozzle wake with the rotor flow field. The flow field in the rotor passage is presented in Part I, while the flow field downstream of the rotor is presented in Part II. Measurements were acquired at 37 axial locations from just upstream of the rotor to one chord downstream of the rotor. The time average flow field and the unsteadiness caused by the wake has been captured. As the nozzle wake travels through the rotor flow field, the nozzle wake becomes distorted with the region of the nozzle wake near the rotor suction surface moving faster than the region near the rotor pressure surface, resulting in a highly distorted wake. The wake is found to be spread out along the rotor pressure surface, as it convects downstream of midchord. The magnitude of the nozzle wake velocity defect grows until close to midchord, after which it decreases. High values of unresolved unsteadiness were observed at the rotor leading edge. This is due to the large flow gradients near the leading edge and the interaction of the nozzle wake with the rotor leading edge. High values of unresolved unsteadiness were also observed near the rotor pressure surface. This increase in unresolved unsteadiness is caused by the interaction of the nozzle wake with the flow near the rotor pressure surface.


1984 ◽  
Vol 106 (2) ◽  
pp. 414-420 ◽  
Author(s):  
J.-J. Camus ◽  
J. D. Denton ◽  
J. V. Soulis ◽  
C. T. J. Scrivener

Detailed experimental measurements of the flow in a cascade of turbine rotor blades with a nonplanar end wall are reported. The cascade geometry was chosen to model as closely as possible that of a H.P. gas turbine rotor blade. The blade section is designed for supersonic flow with an exit Mach number of 1.15 and the experiments covered a range of exit Mach numbers from 0.7–1.2. Significant three-dimensional effects were observed and the origin of these is discussed. The measurements are compared with data for the same blade section in a two-dimensional cascade and also with the predictions of two different fully three-dimensional inviscid flow calculation methods. It is found that both these calculations predict the major three-dimensional effects on the flow correctly.


1997 ◽  
Vol 119 (2) ◽  
pp. 201-213 ◽  
Author(s):  
M. A. Zaccaria ◽  
B. Lakshminarayana

The flow field in turbine rotor passages is complex with unsteadiness caused by the aerodynamic interaction of the nozzle and rotor flow fields. The two-dimensional steady and unsteady flow field at midspan in an axial flow turbine rotor has been investigated experimentally using an LDV with emphasis on the interaction of the nozzle wake with the rotor flow field. The flow field in the rotor passage is presented in Part I. while the flow field downstream of the rotor is presented in Part II. Measurements were acquired at 37 axial locations from just upstream of the rotor to one chord downstream of the rotor. The time-averaged flow field and the unsteadiness caused by the wake have been captured. As the nozzle wake travels through the rotor flow field, the nozzle wake becomes distorted with the region of the nozzle wake near the rotor suction surface moving faster than the region near the rotor pressure surface, resulting in a highly distorted wake. The wake is found to be spread out along the rotor pressure surface, as it convects downstream of midchord. The magnitude of the nozzle wake velocity defect grows until close to midchord, after which it decreases. High values of unresolved unsteadiness were observed at the rotor leading edge. This is due to the large flow gradients near the leading edge and the interaction of the nozzle wake with the rotor leading edge. High values of unresolved unsteadiness were also observed near the rotor pressure surface. This increase in unresolved unsteadiness is caused by the interaction of the nozzle wake with the flow near the rotor pressure surface.


1991 ◽  
Vol 113 (3) ◽  
pp. 141-146 ◽  
Author(s):  
L. M. C. Gato ◽  
L. R. C. Ec¸a ◽  
A. F. de O. Falca˜o

The Wells turbine is an axial-flow air-turbine designed to extract energy from the ocean waves. The turbine is self-rectifying, i.e., produces an unidirectional time-averaged torque from a reciprocating flow. The paper describes an experimental investigation on the aerodynamic performance of a modified version of the Wells turbine, whose rotor blades can be set at varying angle (as in a Kaplan turbine) while the turbine is in motion. The purpose of the work is to investigate whether, and to what extent, the modification to the turbine can enable it to achieve phase control—a method of tuning the energy-absorbing device to the incident waves—and avoid aerodynamic stall on the turbine rotor blades at peaks of air flow rate under conditions of real irregular ocean waves. Experimental results obtained with a model turbine are compared with predicted values from a quasi-three-dimensional computational method of flow analysis.


1985 ◽  
Vol 107 (1) ◽  
pp. 117-122 ◽  
Author(s):  
R. J. Goldstein ◽  
H. P. Chen

The local film cooling effectiveness on a gas turbine blade with a row of discrete cooling jets has been measured using a mass transfer technique. Particular emphasis is placed on phenomena near the end wall of the blade. This region contains a horseshoe vortex system modified by a passage vortex. On the concave (pressure) surface the film cooling performance is not greatly altered by the presence of the end wall. On the convex surface of the blade the film cooling is essentially absent in a triangular region extending from near the region of peak curvature on the blade to its trailing edge. This unprotected region closely corresponds to the location of the passage vortex as indicated by flow visualization. The passage vortex sweeps away the injected coolant flow from the surface. Upstream of the unprotected area the injected flow is skewed toward the middle span of the blade. The influence of the end wall extends about one-half chord length up from the end wall in the present experiments.


Author(s):  
J. H. Nicholson ◽  
A. E. Forest ◽  
M. L. G. Oldfield ◽  
D. L. Schultz

Conventionally, high pressure turbine blading is optimized for aerodynamic performance without any film cooling applied to the surfaces of the blades. It is considered that modern boundary layer prediction techniques are now sufficiently accurate to allow the heat transfer to be considered at the profile design stage. Two turbine rotor profiles were designed, each with a heat-transfer-optimised pressure surface, and a detailed experimental study using transient techniques in the Oxford cascade tunnel was made. The results show that significant reductions in pressure surface heat transfer can be achieved by boundary layer optimization without compromising the aerodynamic efficiency of the blades. A description of the profiles is given, together with transfer rate measurements, pressure distribution, and aerodynamic loss measurements (a technique developed to measure aerodymanic loss in a transient cascade is described) and flow visualisation photographs.


Author(s):  
H. David Joslyn ◽  
Robert P. Dring

The operation of variable cycle gas turbines at negative incidence can result in highly three dimensional separated flows on the turbine rotor pressure surface. These flows can impact both performance and durability. The present program was conducted to experimentally study the behavior of surface flow on a large scale axial flow turbine rotor with incidence varying up to and including negative incidence separation. Fullspan pressure distributions and surface flow visualization were acquired over a range of incidence. The data indicate that at large negative incidence, pressure surface separation occurred and extended to 60 percent chord at midspan. These separated flows were simulated at midspan by applying potential flow theory to match the measured pressure distributions.


Sign in / Sign up

Export Citation Format

Share Document