Effects of Pin-Fin Height on Flow and Heat Transfer in a Rectangular Duct

Author(s):  
X. Chi ◽  
T. I.-P. Shih ◽  
K. M. Bryden ◽  
S. Siw ◽  
M. K. Chyu ◽  
...  

CFD simulations were performed to study the flow and heat transfer in a rectangular duct (Wd × Hd, where Wd/Hd = 3) with a staggered array of circular pin fins (D = Hd/4) mounted on the two opposite walls separated by Hd. For this array of pin fins, five different pin-fin height (H) combinations were examined, and they are (1) H = Hd = 4D (i.e., all pin fins extended from wall to wall), (2) H = 3D on both walls, (3) H = 2D on both walls, (4) H = 4D on one wall and H = 2D on the opposite wall, and (5) H = 3D on one wall and H = 2D on the opposite wall. The H values studied give H/D values of 2, 3, and 4 and C/D values of 2, 1, and 0, where C is the distance between the pin-fin tip and the opposite wall. For all cases, the duct wall and pin-fin surface temperatures were maintained at Tw = 313.15 K; the temperature and the speed of the air at the duct inlet were uniform at Tinlet = 343.15 K and U = 8.24 m/s; the pressure at the duct exit was fixed at Pb = 1 atm; and the Reynolds number based on the duct hydraulic diameter and duct inlet conditions was Re = 15,000. This CFD study is based on 3-D steady RANS, where the ensemble averaged continuity, compressible Navier-Stokes, and energy equations are closed by the thermally perfect equation of state and the two-equation realizable k-ε turbulence model with wall functions and with the low-Reynolds number model of Chen and Patel in the near-wall region. The usefulness of this CFD study was assessed by comparing predicted heat-transfer coefficient and friction factor with available experimental data. Results are presented to show how the flow induced by arrays of pin fins of different heights affects temperature distribution, surface heat transfer, and pressure loss.

Author(s):  
Gaoliang Liao ◽  
Xinjun Wang ◽  
Xiaowei Bai ◽  
Ding Zhu ◽  
Jinling Yao

By using the CFX software, the three-dimensional flow and heat transfer characteristics in the cooling duct with pin-fin in the blade trailing edge were numerically simulated. The effects of pin-fin arrangements, Reynolds number, steam superheat degrees, streamwise pin density and convergence angle of the wedge duct on the flow and heat transfer characteristics were analysed. The results show that the Nusselt number on the endwall and pin-fin surfaces as well as the pin-fin row averaged Nusselt number increase with the increasing of Reynolds number, while it decreased with the with the increasing of X/D. The pressure drop increases with the increasing of Reynolds number while decreases with the increasing of X/D in the wedge duct. The degree of superheat has little effect on the pressure loss in the wedge duct. A comprehensive analysis and comparison show that the highest thermal performance is reached in the wedge duct when the value of X/D is 1.5.


2008 ◽  
Vol 130 (7) ◽  
Author(s):  
Ali Rozati ◽  
Danesh K. Tafti ◽  
Neal E. Blackwell

Cylindrical pin fins with tip clearances are investigated in the low Reynolds number range 5<ReD<400 in a plane minichannel. Five tip gaps are investigated ranging from a full pin fin (t*=0.0) to a clearance of t*=0.4D*, where D* is the pin diameter. It is established that unlike high Reynolds number flows, the flow and heat transfer are quite sensitive to tip clearance. A number of unique flow effects, which increase the heat transfer performance, are identified. The tip gap affects the heat transfer coefficient by eliminating viscosity dominated end wall effects on the pin, by eliminating the pin wake shadow on the end walls, by inducing accelerated flow in the clearance, by reducing or impeding the development of recirculating wakes, and by redistributing the flow along the height of the channel. In addition, tip gaps also reduce form losses and friction factor. A clearance of t*=0.3D* was found to provide the best performance at ReD<100; however, for ReD>100, both t*=0.2D* and 0.3D* were comparable in performance.


Author(s):  
Jin Xu ◽  
Jiaxu Yao ◽  
Pengfei Su ◽  
Jiang Lei ◽  
Junmei Wu ◽  
...  

Convective heat transfer enhancement and pressure loss characteristics in a wide rectangular channel (AR = 4) with staggered pin fin arrays are investigated experimentally. Six sets of pin fins with the same nominal diameter (Dn = 8mm) are tested, including: Circular, Elliptic, Oblong, Dropform, NACA and Lancet. The relative spanwise pitch (S/Dn = 2) and streamwise pitch (X/Dn = 4.5) are kept the same for all six sets. Same nominal diameter and arrangement guarantee the same blockage area in the channel for each set. Reynolds number based on channel hydraulic diameter is from 10000 to 70000 with an increment of 10000. Using thermochromic liquid crystal (R40C20W), heat transfer coefficients on bottom surface of the channel are achieved. The obtained friction factor, Nusselt number and overall thermal performance are compared with the previously published data from other groups. The averaged Nusselt number of Circular pin fins is the largest in these six pin fins under different Re. Though Elliptic has a moderate level of Nusselt number, its pressure loss is next to the lowest. Elliptic pin fins have pretty good overall thermal performance in the tested Reynolds number range. When Re>40000, Lancet has a same level of performance as Circular, but its pressure loss is much lower than Circular. These two types are both promising alternative configuration to Circular pin fin used in gas turbine blade.


Author(s):  
Kathryn L. Kirsch ◽  
Jason K. Ostanek ◽  
Karen A. Thole ◽  
Eleanor Kaufman

Arrays of variably-spaced pin fins are used as a conventional means to conduct and convect heat from internal turbine surfaces. The most common pin shape for this purpose is a circular cylinder. Literature has shown that beyond the first few rows of pin fins, the heat transfer augmentation in the array levels off and slightly decreases. This paper provides experimental results from two studies seeking to understand the effects of gaps in pin spacing (row removals) and alternative pin geometries placed in these gaps. The alternative pin geometries included large cylindrical pins and oblong pins with different aspect ratios. Results from the row removal study at high Reynolds number showed that when rows four through eight were removed, the flow returned to a fully-developed channel flow in the gap between pin rows. When larger alternative geometries replaced the fourth row, heat transfer increased further downstream into the array.


2006 ◽  
Vol 129 (6) ◽  
pp. 685-696 ◽  
Author(s):  
Guoguang Su ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations with multi-block chimera grids were performed to study the three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with staggered arrays of pin-fins. The channel aspect ratio (AR) is 4:1, the pin length to diameter ratio (H∕D) is 2.0, and the pin spacing to diameter ratio is 2.0 in both the stream-wise (S1∕D) and span-wise (S2∕D) directions. A total of six calculations have been performed with various combinations of rotation number, Reynolds number, and coolant-to-wall density ratio. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.20, respectively, while the Reynolds number varied from 10,000 to 100,000. For the rotating cases, the rectangular channel was oriented at 150deg with respect to the plane of rotation to be consistent with the configuration of the gas turbine blade. A Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure for detailed predictions of mean velocity, mean temperature, and heat transfer coefficient distributions.


2019 ◽  
Vol 16 (10) ◽  
pp. 4262-4265
Author(s):  
Rupesh Gupta ◽  
Varinder Singh ◽  
Sheifali Gupta ◽  
Deepali Gupta

Extended surfaces are widely used in various applications like aerospace parts design, cooling and also in solar collectors for effective dissipation of heat. The present paper gives us an idea about the heat transfer analysis for solid pin fin and perforated pin fins that are fitted in a rectangular chamber. The rectangular chamber has a cross section area of 300 * 200 mm2. It is concluded from the experiment that perforated pin fin always works better as compared to solid pin fin in all conditions. Moreover, for lower range of Reynolds number, solid pin fin performs better whereas for higher range of Reynolds number, perforated pin fin performs better as compared to circular pin fin.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Yu Rao ◽  
Yamin Xu ◽  
Chaoyi Wan

A numerical study was conducted to investigate the effects of dimple depth on the flow and heat transfer characteristics in a pin fin-dimple channel, where dimples are located spanwisely between the pin fins. The study aimed at promoting the understanding of the underlying convective heat transfer mechanisms in the pin fin-dimple channels and improving the cooling design for the gas turbine components. The flow structure, friction factor, and heat transfer performance of the pin fin-dimple channels with various dimple depths have been obtained and compared with each other for the Reynolds number range of 8200–80,800. The study showed that, compared to the pin fin channel, the pin fin-dimple channels have further improved convective heat transfer performance, and the pin fin-dimple channel with deeper dimples shows relatively higher Nusselt number values. The study still showed a dimple depth-dependent flow friction performance for the pin fin-dimple channels compared to the pin fin channel, and the pin fin-dimple channel with shallower dimples shows relatively lower friction factors over the studied Reynolds number range. Furthermore, the computations showed the detailed characteristics in the distribution of the velocity and turbulence level in the flow, which revealed the underlying mechanisms for the heat transfer enhancement and flow friction reduction phenomenon in the pin fin-dimple channels.


Author(s):  
Guoguang Su ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations with multi-block chimera grids were performed to study the three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with staggered arrays of pin-fins. The channel aspect ratio (AR) is 4:1, the pin length to diameter ratio (H/D) is 2.0, and the pin spacing to diameter ratio is 2.0 in both the stream-wise (S1/D) and span-wise (S2/D) directions. A total of six calculations have been performed with various combinations of rotation number, Reynolds number, and coolant-to-wall density ratio. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.20, respectively, while the Reynolds number varied from 10,000 to 100,000. For the rotating cases, the rectangular channel was oriented at 150 deg with respect to the plane of rotation to be consistent with the configuration of the gas turbine blade. A Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure for detailed predictions of mean velocity, mean temperature, and heat transfer coefficient distributions.


Author(s):  
Rui Kan ◽  
Shuqing Tian

A combined impingement-pedestal geometry for turbomachinery double wall cooling application is studied numerically with the shear stress transport turbulence model. Conjugated CFD simulation is performed to investigate the cooling effectiveness distribution. The configuration consists of a high aspect ratio cooling duct, with jet array impinging onto the pin fin-roughed wall. The jet Reynolds number varies from 8,000 to 80,000, jet-to-target wall spacing is kept constant at Z/Dj=0.8. Three main parameters are investigated, including the jet Reynolds number, pin fin shapes (circular and elongated) and the relative location between jets and pin fins (the jet placed uniformly inside the duct or more densely at the front of the duct). For more detailed investigations, the pin fin diameter and impingement hole diameter are varied independently, and a total of 26 configurations are studied. The results show that the double wall configuration with pin fins significantly increases the heat transfer coefficients, compared to that with only impingement. Non-uniform jet arrangement results in a stronger crossflow and enhances heat transfer on the pins, which brings an increase of cooling effectiveness and more uniform temperature distribution.


Sign in / Sign up

Export Citation Format

Share Document