Convective Cooling Optimization of a Blade for a Supercritical Steam Turbine

Author(s):  
Grzegorz Nowak ◽  
Włodzimierz Wro´blewski ◽  
Iwona Nowak

This paper discusses the problem of blade cooling system optimization connected with Conjugate Heat Transfer (CHT) analysis for reliable thermal field prediction within a steam cooled component. Since the full CHT solution, which involves the main flow, blade material and the coolant flow domains is computationally expensive from the point of view of optimization process, it was decided to reduce the problem by fixing the boundary conditions at the blade surface and solving the task for the interior only (both solid material and coolant). Such assumption, on one hand, makes the problem computationally feasible, and on the other, provides more reliable thermal field prediction than it used to be with the empirical relationships. The analysis involves shape optimization of internal cooling passages within an airfoil. The cooling passages are modeled with a set of four Bezier splines joined together to compose a closed contour. Each passage is fed with cooling steam of constant parameters at the inlet. In the present study the airfoil profile is taken as aerodynamically optimal. The search problem is solved with evolutionary algorithm and the final configuration is to be found among the Pareto optimal cooling candidates.

Author(s):  
Grzegorz Nowak ◽  
Włodzimierz Wro´blewski

This paper discusses the problem of airfoil cooling system optimization connected with Conjugate Heat Transfer (CHT) analysis for reliable thermal field prediction within a cooled component. Since the full CHT solution, which involves the main flow, blade material and the coolant flow domains is computationally expensive from the point of view of optimization process, it was decided to reduce the problem by fixing the boundary conditions at the blade surface and solving the task for the interior only (both solid material and coolant). Such assumption, on one hand, makes the problem computationally feasible, and on the other, provides more reliable thermal field prediction than it used to be with the empirical relationships. The analysis involves the optimization of location and size of internal cooling passages within an airfoil. Initially, cooling is provided with circular passages and heat is transported by convection. The task is approached in 3D configuration. Each passage is fed with cooling air of constant parameters at the inlet. In the present study the airfoil profile is taken as aerodynamically optimal. The optimization is done with an evolutionary algorithm within a 30 dimensional design space, composed of space coordinates and radii of cooling channels. The search is realized with a weighted single objective function, which consisted of three objectives formulated on the basis of the airfoil’s thermal field and coolant mass flow.


Author(s):  
Grzegorz Nowak

This paper discusses the problem of cooling system optimization within a gas turbine airfoil regarding to thermo-mechanical behavior of the component, as well as some economical aspects of turbine operation. The main goal of this paper is to show the possibilities of evolutionary approach application to the cooling system optimization. This method, despite its relatively high computational cost, seems to be a valuable tool to such technical problems. The analysis involves the optimization of location and size of internal cooling passages within an airfoil. Initially cooling is provided with circular passages and heat is transported by convection. During the optimization the number of channels can vary. The task is approached in 3D configuration. Each passage is fed with cooling air of constant parameters at the inlet. Also a constant pressure drop is assumed along the passage length. The thermal boundary conditions in passages vary with diameter and local vane temperature (passage wall temperature). The analysis is performed by means of the genetic algorithm for the optimization task and FEM for the heat transfer predictions within the component. In the present study the airfoil profile is taken as aerodynamically optimal and the objective of the search procedure is to find cooling structure variant that at given external conditions provides lower stresses, material temperature and indirectly coolant usage.


Author(s):  
A. Bonini ◽  
A. Andreini ◽  
C. Carcasci ◽  
B. Facchini ◽  
A. Ciani ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way turbine components heat load management has become a compulsory activity and then, a reliable procedure to evaluate the blades and vanes metal temperatures, is, nowadays, a crucial aspect for a safe components design. This two part work presents a three-dimensional conjugate heat transfer procedure developed in the framework of an internal research project of GE Oil & Gas. The procedure, applied to the first rotor blade of the MS5002E gas turbine, consists of a conjugate heat transfer analysis in which the internal cooling system was modeled by an in-house one dimensional thermo-fluid network solver, the external heat loads and pressure distribution have been evaluated through 3D CFD and the heat conduction in the solid is carried out through a 3D FEM solution. The first part of this work is focused on the description of the procedures in terms of set up of the equivalent fluid network model of internal cooling system and its tuning through experimental measurements of blade flow function. A first computation of blade metal temperature was obtained by coupling with CFD computations carried out on a de-featured geometry of the blade. Achieved results are compared with the data of a metallographic analysis performed on a blade operated on an actual engine. Some discrepancies are observed between datasets, suggesting the necessity to improve the models, mainly from the CFD side.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Lorenzo Winchler ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Andrei ◽  
Alessio Bonini ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way, turbine components heat load management has become a compulsory activity, and then, a reliable procedure to evaluate the blades and vanes metal temperatures is, nowadays, a crucial aspect for a safe components design. In the framework of the design and validation process of high pressure turbine cooled components of the BHGE NovaLTTM 16 gas turbine, a decoupled methodology for conjugate heat transfer prediction has been applied and validated against measurement data. The procedure consists of a conjugate heat transfer analysis in which the internal cooling system (for both airfoils and platforms) is modeled by an in-house one-dimensional thermo-fluid network solver, the external heat loads and pressure distribution are evaluated through 3D computational fluid dynamics (CFD) analysis and the heat conduction in the solid is carried out through a 3D finite element method (FEM) solution. Film cooling effect has been treated by means of a dedicated CFD analysis, implementing a source term approach. Predicted metal temperatures are finally compared with measurements from an extensive test campaign of the engine in order to validate the presented procedure.


2000 ◽  
Vol 123 (3) ◽  
pp. 552-557 ◽  
Author(s):  
W. N. Dawes ◽  
P. C. Dhanasekaran ◽  
A. A. J. Demargne ◽  
W. P. Kellar ◽  
A. M. Savill

As CFD has matured to the point that it is capable of reliable and accurate flow simulation, attention is now firmly fixed on how best to deploy that CFD as part of a process to improve actual products. This “process” consists of capturing and controlling the geometry of a suitable portion of an aeroengine (e.g., a blade row, or an internal cooling system or a fan-plus-nacelle), building a mesh system, solving the flow and responding to an appropriately visualized flow field by changing or accepting the geometry. This paper looks at that process from the point of view of identifying any bottlenecks and argues that current research should be directed at the CAD-to-mesh-to-solution cycle time rather than, as has been traditional, just looking at the solver itself and in isolation. Work aimed at eliminating some of these bottlenecks is described, with a number of practical examples.


Author(s):  
Grzegorz Nowak ◽  
Włodzimierz Wro´blewski

This paper discuses the problem of cooling system optimization within a gas turbine vane regarding to thermo-mechanical behaviour of the component. The analysis involves the optimization of location and size of internal cooling passages within the vane. Cooling is provided with ten circular passages and heat is transported by convection. The task is approached in 3D configuration. Each passage is fed with cooling air of constant parameters at the inlet. Also a constant pressure drop is assumed along the passage length. The thermal boundary conditions in passages varied with diameter and local vane temperature (passage wall temperature). The analysis is performed by means of the genetic algorithm for the optimization task and FEM for the heat transfer predictions within the component. In the present study the vane profile is taken as aerodynamically optimal and the objective of the search procedure is to find cooling structure variant that at given external conditions provides possibly low stresses and material temperature.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Julian Girardeau ◽  
Jérôme Pailhes ◽  
Patrick Sebastian ◽  
Frédéric Pardo ◽  
Jean-Pierre Nadeau

Designing high performance cooling systems suitable for preserving the service lifetime of nozzle guide vanes of turboshaft engines leads to significant aerodynamic losses. These losses jeopardize the performance of the whole engine. In the same time, a low efficiency cooling system may affect the costs of maintenance repair and overhaul of the engine as component life decreases. Consequently, designing cooling systems of gas turbine vanes is related to a multiobjective design problem. In this paper, it is addressed by investigating the functioning of a blade and optimizing its design by means of an evolutionary algorithm. Systematic 3D CFD simulations are performed to solve the aero-thermal problem. Then, the initial multiobjective problem is solved by aggregating the multiple design objectives into one single relevant and balanced mono-objective function; two different types of mono-objective functions are proposed and compared. This paper also proposes to enhance available knowledge in the literature of cooling systems of gas turbine vanes by simulating the internal cooling system of the vane. From simulations thermal efficiency and aerodynamic losses are compared and their respective influences on the global performances of the whole engine are investigated. Finally, several optimal designs are proposed.


Author(s):  
Frank Deidewig ◽  
Michael Wechsung

Huge coal fueled power plants in the 1000MWel class are requiring high efficient steam turbines which can handle supercritical steam conditions up to 300bar and 600°C. Besides these boundary conditions, the capability for stabilising the grid fluctuations is also one key requirement. Siemens is focussing on this topic by using the so-called overload valve(s), which enhance the maximum amount of main steam mass flow entering the high-pressure turbine by use of additional valve(s). Using this technique, a power increase in the range of up to 20% is theoretically achievable. Siemens PG has collected a lot of positive service experiences throughout the past decades with this technique, and therefore this principle is being well established in the field. The connection between the additional steam mass flow passing through the overload valve and the standard blading path is somewhat downstream from the first stage. These connecting points can be varied (for this current turbine design) — if necessary — between the third and fifth stage after the turbine inlet. From an economic point of view, the approach of extending the power range via overload valves is even better than throttling the whole machine during standard operating condition and opening the valves fully at certain peak load requirements. Historically based, Siemens designs and manufactures reaction stages, ‘reaction turbines’, which must be thrust compensated via a separate piston to equalize and reduce the overall axial thrust down to a small number. Increasing the main steam temperatures up to the previously mentioned levels makes the internal cooling device of this thrust equilibrium piston a major key point for the whole turbine. No external cooling pipe-work or special materials are required. In Figure 1, a longitudinal cross-section 3D-view of the newly designed high-pressure turbine is drawn. The outer casing — at the steam inlet regime — is cast steel of 10% chromium content with significantly reduced wall thickness, whereas the outer casing at the hp-exhaust is a 1% chromium steel. The thrust-balancing piston on the shaft can be identified on the right hand side near the steam inlet channel. As noted further on, the steam outlet channels are both connected to the lower part of the turbine, whereas the inlet chambers are located at 3 o’clock and 9 o’clock, respectively. The outer casing has no horizontal splitting line; the turbine is being built as a barrel-design. This paper deals with the described turbine regarding the major design criteria from the thermodynamic point of view. Based on several calculations, the following design topics were covered: • Developing a turbine-internal cooling system for the thrust equilibrium/balancing piston as well as for the inner and outer casing. • Evaluation of staged piston with new internal cooling system adjusted for the impact on heat rate. • Quantification of all related mass flows, temperatures and pressures. • Axial thrust calculation to determine the required diameters of the staged piston. • General remarks concerning efficiency behaviour of hp-turbines with different geometrical designs.


Author(s):  
W. N. Dawes ◽  
P. C. Dhanasekaran ◽  
A. A. J. Demargne ◽  
W. P. Kellar ◽  
A. M. Savill

As CFD has matured to the point that it is capable of reliable and accurate flow simulation, attention is now firmly fixed on how best to deploy that CFD as part of a process to improve actual products. This “process” consists of capturing and controlling the geometry of a suitable portion of an aeroengine (eg a blade row, or an internal cooling system or a fan-plus-nacelle), building a mesh system, solving the flow and responding to an appropriately visualized flow field by changing or accepting the geometry. This paper looks at that process from the point of view of identifying any bottlenecks and argues that current research should be directed at the CAD-to-mesh-to-solution cycle time rather than, as has been traditional, just looking at the solver itself and in isolation. Work aimed at eliminating some of these bottlenecks is described, with a number of practical examples.


Sign in / Sign up

Export Citation Format

Share Document