scholarly journals Turbine Blade Cooling System Optimization

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Julian Girardeau ◽  
Jérôme Pailhes ◽  
Patrick Sebastian ◽  
Frédéric Pardo ◽  
Jean-Pierre Nadeau

Designing high performance cooling systems suitable for preserving the service lifetime of nozzle guide vanes of turboshaft engines leads to significant aerodynamic losses. These losses jeopardize the performance of the whole engine. In the same time, a low efficiency cooling system may affect the costs of maintenance repair and overhaul of the engine as component life decreases. Consequently, designing cooling systems of gas turbine vanes is related to a multiobjective design problem. In this paper, it is addressed by investigating the functioning of a blade and optimizing its design by means of an evolutionary algorithm. Systematic 3D CFD simulations are performed to solve the aero-thermal problem. Then, the initial multiobjective problem is solved by aggregating the multiple design objectives into one single relevant and balanced mono-objective function; two different types of mono-objective functions are proposed and compared. This paper also proposes to enhance available knowledge in the literature of cooling systems of gas turbine vanes by simulating the internal cooling system of the vane. From simulations thermal efficiency and aerodynamic losses are compared and their respective influences on the global performances of the whole engine are investigated. Finally, several optimal designs are proposed.

Author(s):  
Julian Girardeau ◽  
Frederic Pardo ◽  
Jérôme Pailhès ◽  
Jean-Pierre Nadeau

The authors would like to address improvements on cooling system optimization within a turboshaft Nozzle Guide Vane (NGV). Designing high performance cooling systems able to preserve the life duration of the NGV can lead to significant aerodynamic losses. Theses losses jeopardize the performance of the whole engine. In the same time, a low efficiency cooling system may affect engine Maintenance Repair and Overhaul (MRO) costs as component life decreases. To help turbine designers, the authors studied a vane and searched for an optimal cooling design by means of an evolutionary algorithm. The associated objective function is based on satisfaction indexes, using Harrington’s desirability curves and Antonsson’s aggregation functions. Evaluation and optimization methods will be presented as well as optimized designs.


2008 ◽  
Vol 12 (3) ◽  
pp. 65-73 ◽  
Author(s):  
Micha Kumar ◽  
N. Alagumurthi ◽  
K. Palaniradja

It is well known that turbine engine efficiency can be improved by increasing the turbine inlet gas temperature. This causes an increase of heat load to the turbine components. Current inlet temperature level in advanced gas turbine is far above the melting point of the vane material. Therefore, along with high temperature material development, sophisticated cooling scheme must be developed for continuous safe operation of gas turbine with high performance. Gas turbine blades are cooled internally and externally. Internal cooling is achieved by passing the coolant through passages inside the blade and extracting the heat from outside of the blade. This paper focuses on turbine vanes internal cooling. The effect of arrangement of rib and parabolic fin turbulator in the internal cooling channel and numerical investigation of temperature distribution along the vane material has been presented. The formulations for the internal cooling for the turbine vane have been done and these formulated equations are solved by MacCormack's technique.


Author(s):  
Grzegorz Nowak

This paper discusses the problem of cooling system optimization within a gas turbine airfoil regarding to thermo-mechanical behavior of the component, as well as some economical aspects of turbine operation. The main goal of this paper is to show the possibilities of evolutionary approach application to the cooling system optimization. This method, despite its relatively high computational cost, seems to be a valuable tool to such technical problems. The analysis involves the optimization of location and size of internal cooling passages within an airfoil. Initially cooling is provided with circular passages and heat is transported by convection. During the optimization the number of channels can vary. The task is approached in 3D configuration. Each passage is fed with cooling air of constant parameters at the inlet. Also a constant pressure drop is assumed along the passage length. The thermal boundary conditions in passages vary with diameter and local vane temperature (passage wall temperature). The analysis is performed by means of the genetic algorithm for the optimization task and FEM for the heat transfer predictions within the component. In the present study the airfoil profile is taken as aerodynamically optimal and the objective of the search procedure is to find cooling structure variant that at given external conditions provides lower stresses, material temperature and indirectly coolant usage.


Author(s):  
S. Naik ◽  
J. Krueckels ◽  
M. Henze ◽  
W. Hofmann ◽  
M. Schnieder

This paper describes the aero-thermal development and validation of the GT36 heavy duty gas turbine. The turbine which has evolved from the existing and proven GT26 design, consists of an optimised annulus flow path, higher lift aerofoil profiles, optimised aerodynamic matching between the turbine stages and new and improved cooling systems of the turbine vanes and blades. A major design feature of the turbine has been to control and reduce the aerodynamic losses, associated with the aerofoil profiles, trailing edges, blade tips, endwalls and coolant ejection. The advantages of these design changes to the overall gas turbine efficiency have been verified via extensive experimental testing in high-speed cascade test rigs and via the utilisation of high fidelity multi-row computational fluid dynamics design systems. The thermal design and cooling systems of the turbine vanes, blades have also been improved and optimised. For the first stage vane and blade aerofoils and platforms, multi-row film cooling with new and optimised diffuser cooling holes have been implemented and validated in high speed linear cascades. Additionally, the internal cooling design features of all the blades and vanes were also improved and optimised, which allowed for more homogenous metal temperatures distributions on the aerofoils. The verification and validation of the internal thermal designs of all the turbine components has been confirmed via extensive testing in dedicated Perspex models, where measurements were conducted for local pressure losses, overall flow distributions and local heat transfer coefficients. The turbine is currently being tested and undergoing validation in the GT36 Test Power Plant in Birr, Switzerland. The gas turbine is heavily instrumented with a wide range of validation instrumentation including thermocouples, pressure sensors, strain gauges and five-hole probes. In addition to performance mapping and operational validation, a dedicated thermal paint validation test will also be performed.


2021 ◽  
Vol 1 (3) ◽  
pp. 53-61
Author(s):  
S.G. Dragomirov ◽  
◽  
P.Ig. Eydel ◽  
A.Yu. Gamayunov ◽  
M.S. Dragomirov ◽  
...  

The article describes the results of a study of the physicochemical characteristics of solid particles of contaminants present in the coolant of automobile and tractor engines. The data on the fractional, physical and chemical composition of solid particles of contamination are given. It was established that the generalized reason for the appearance of contaminants of various nature in liquid cooling systems of engines is the physicochemical interaction of the coolant (antifreeze) with different elements and dissimilar materials of the cooling system. The use of absolutely pure coolant in the cooling systems of automobile and tractor engines is practically unrealistic, since there will always be operating conditions that contribute to the formation of contamination. A number of chemical elements (in an amount from 1 to 47% of each element) were found in the composition of solid particles of coolant contaminants: iron Fe, silicon Si, aluminum Al, lead Pb, tin Sn, zinc Zn, calcium Ca, magnesium Mg, copper Cu. In addition, at a level of less than 1.0% (wt.), Such chemical elements as potassium K, sodium Na, titanium Ti, phosphorus P, sulfur S, chromium Cr, molyb-denum Mo, chlorine Cl, iridium Ir, nickel Ni, manganese Mn, etc. were found. The most dangerous contaminants are particles of iron Fe and silicon Si, contained in the coolant in an amount of up to 47 and 37%, respectively, and possessing significant hardness and angularity. The abrasive proper-ties of Fe and Si particles create the danger of removing a thin oxide film on the inner surface of the walls of the cooling radiator channels, leading to their premature destruction. In this regard, it is concluded that high-performance engine coolant filters should be used in automobiles and tractors to remove these contaminants from the flow.


Author(s):  
J. M. Lane

While the radial in-flow turbine has consistently demonstrated its capability as a high-performance component for small gas turbine engines, its use has been relegated to lower turbine-inlet-temperature cycles due to insurmountable problems with respect to the manufacturing of radial turbine rotors with internal cooling passages. These cycle temperature limitations are not consistent with modern trends toward higher-performance, fuel-conservative engines. This paper presents the results of several Army-sponsored programs, the first of which addresses the performance potential for the high-temperature radial turbine. The subsequent discussion presents the results of two successful programs dedicated to developing fabrication techniques for internally cooled radial turbines, including mechanical integrity testing. Finally, future near-term capabilities are projected.


Author(s):  
Arash Saidi ◽  
Bengt Sundén

Internal cooling channels are commonly used to reduce the thermal loads on the gas turbine blades to improve overall efficiency. In this study a numerical investigation has been carried out to provide a validated and consistent method to deal with the prediction of the fluid flow and the heat transfer of such channels with square cross sections. The rotation modified Navier-Stokes and energy equations together with a low-Re number version of the k-ε turbulence model are solved with appropriate boundary conditions. The solution procedure is based on a numerical method using a collocated grid, and the pressure-velocity coupling is handled by the SIMPLEC algorithm. The computations are performed with the assumption of fully developed periodic conditions. The calculations are carried out for smooth ducts with and without rotation and effects of rotation on the heat transfer are described. Similar numerical calculations have carried out for channels with rib-roughened walls. The obtained results are compared with available experimental data and empirical correlations for the heat transfer rate and the friction factor. Some details of the flow and heat transfer fields are also presented.


Author(s):  
Miki Koyama ◽  
Toshio Mimaki

This aims to put the fruits of the R&D; “The Hydrogen Combustion Turbine” in WE-NET Phase I Program(1993-1998) to practical use at an early stage. The topping regenerating cycle was selected as the optimum cycle, with energy efficiency expected to be more than 60%(HHV) under the conditions of the turbine inlet temperature of 1973K(1700°C) and the pressure of 4.8MPa,in it. • As the turbine inlet temperature and pressure increase, issues to be resolved include the amount of NOx emissions and the durability of super alloys for turbine blades under such thermal conditions. In this respect, the development of the highly efficient methane-oxygen combustion technology, the turbine blade cooling technology, and the ultrahigh-temperature materials including thermal barrier coatings is being carried out. • In 1999, the results made it clear that there are little error among the three analytic programs used to verify the system efficiency, it was verified that the burning rate was going to arrive at over 98% from the methane-oxygen combustion test (under the atmospheric pressure). And the type of vane “Film cooling plus recycle type with internal cooling system” was selected as the most suitable vane.


Author(s):  
Sandu Constantin ◽  
Dan Brasoveanu

Abstract Cooling systems with liquid for gas turbine engines that use the relative motion of the engine stator with respect to the rotor for actuating the coolant pump can be encapsulated within the engine rotor. In this manner, the difficult problem of sealing stator/rotor interfaces at high temperature, pressure and relative velocity is circumvented. A first generation of such cooling systems could be manufactured using existing technologies and would boost the thermal efficiency of gas turbine engines by more than 2% compared to recent designs that use advanced air-cooling methods. Later, relative cooling systems could increase the thermal efficiency of gas turbine engines by 8%–11% by boosting the temperatures at turbine inlet to stoichiometric levels and recovering most of the heat extracted from turbine during cooling. The appreciated high reliability of this cooling system will allow widespread use for aerospace propulsion.


Author(s):  
Joy Nondy ◽  
Tapan Kr. Gogoi

Abstract In this paper, a combined power and cooling system is thermodynamically analyzed. The system consists of a natural gas-fired gas turbine (GT) plant integrated with a heat recovery steam generator (HRSG), two steam turbines (STs), one organic Rankine cycle (ORC) and two absorption cooling systems (ACSs). With certain given input parameters, the GT plant produces net power of 36.06 MW, the two STs contribute 17.07 MW while from the ORC, 7.18 MW of net power was obtained. From the steam-operated ACS-I, a net 10.36 MW of cooing could be produced. Again, from the GT exhaust operated ACS-II, it was possible to generate additional 3.37 MW of cooling. From exergy analysis, it was found that the total irreversibility was the highest in the GT cycle with a net contribution of 180.412 MW followed by 4.178 MW from the HRSG, 3.561 MW from the ORC, 1.743 MW from ACS-I, 1.186 MW from ST-I, 0.812 MW from ACS-II, 0.175 MW from ST-II. The exergy efficiencies of the GT cycle, ORC, ACS-I and ACS-II were found 22.00%, 65.48%, 18.95% and 14.4% respectively. Regarding the power and cooling output, it can be concluded that these results are specific to the selected operating parameters. Further investigation is required, where, other similar configurations may be considered to make a final comment on the suitability of the proposed configuration from energy output and economic point of view.


Sign in / Sign up

Export Citation Format

Share Document