Conjugate Heat Transfer Calculations on GT Rotor Blade for Industrial Applications: Part I—Equivalent Internal Fluid Network Setup and Procedure Description

Author(s):  
A. Bonini ◽  
A. Andreini ◽  
C. Carcasci ◽  
B. Facchini ◽  
A. Ciani ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way turbine components heat load management has become a compulsory activity and then, a reliable procedure to evaluate the blades and vanes metal temperatures, is, nowadays, a crucial aspect for a safe components design. This two part work presents a three-dimensional conjugate heat transfer procedure developed in the framework of an internal research project of GE Oil & Gas. The procedure, applied to the first rotor blade of the MS5002E gas turbine, consists of a conjugate heat transfer analysis in which the internal cooling system was modeled by an in-house one dimensional thermo-fluid network solver, the external heat loads and pressure distribution have been evaluated through 3D CFD and the heat conduction in the solid is carried out through a 3D FEM solution. The first part of this work is focused on the description of the procedures in terms of set up of the equivalent fluid network model of internal cooling system and its tuning through experimental measurements of blade flow function. A first computation of blade metal temperature was obtained by coupling with CFD computations carried out on a de-featured geometry of the blade. Achieved results are compared with the data of a metallographic analysis performed on a blade operated on an actual engine. Some discrepancies are observed between datasets, suggesting the necessity to improve the models, mainly from the CFD side.

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Lorenzo Winchler ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Andrei ◽  
Alessio Bonini ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way, turbine components heat load management has become a compulsory activity, and then, a reliable procedure to evaluate the blades and vanes metal temperatures is, nowadays, a crucial aspect for a safe components design. In the framework of the design and validation process of high pressure turbine cooled components of the BHGE NovaLTTM 16 gas turbine, a decoupled methodology for conjugate heat transfer prediction has been applied and validated against measurement data. The procedure consists of a conjugate heat transfer analysis in which the internal cooling system (for both airfoils and platforms) is modeled by an in-house one-dimensional thermo-fluid network solver, the external heat loads and pressure distribution are evaluated through 3D computational fluid dynamics (CFD) analysis and the heat conduction in the solid is carried out through a 3D finite element method (FEM) solution. Film cooling effect has been treated by means of a dedicated CFD analysis, implementing a source term approach. Predicted metal temperatures are finally compared with measurements from an extensive test campaign of the engine in order to validate the presented procedure.


Author(s):  
Lorenzo Winchler ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Andrei ◽  
Alessio Bonini ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way turbine components heat load management has become a compulsory activity and then, a reliable procedure to evaluate the blades and vanes metal temperatures, is, nowadays, a crucial aspect for a safe components design. In the framework of the design and validation process of HPT (High Pressure Turbine) cooled components of the BHGE NovaLT™ 16 gas turbine, a decoupled methodology for conjugate heat transfer prediction has been applied and validated against measurement data. The procedure consists of a conjugate heat transfer analysis in which the internal cooling system (for both airfoils and platforms) is modeled by an in-house one-dimensional thermo-fluid network solver, the external heat loads and pressure distribution are evaluated through 3D CFD analysis and the heat conduction in the solid is carried out through a 3D FEM solution. Film cooling effect has been treated by means of a dedicated CFD analysis, implementing a source term approach. Predicted metal temperatures are finally compared with measurements from an extensive test campaign of the engine, in order to validate the presented procedure.


Author(s):  
A. Andreini ◽  
A. Bonini ◽  
R. Da Soghe ◽  
B. Facchini ◽  
A. Ciani ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way turbine components heat load management has become a compulsory activity and then, a reliable procedure to evaluate the blades and vanes metal temperatures, is, nowadays, a crucial aspect for a safe components design. This two part work presents a three-dimensional conjugate heat transfer procedure developed in the framework of an internal research project of GE Oil & Gas. The procedure, applied to the first rotor blade of the MS5002E gas turbine, consists in a decoupled analysis in which the internal cooling system was modeled by an in-house one dimensional thermo-fluid network solver, the external heat loads and pressure distribution have been evaluated through 3D CFD and the heat conduction in the solid is carried out through a 3D FEM solution. The second part of this work is focused on the improvement of external heat loads prediction through the use of a full featured geometry of the blade. In particular a detailed representation of the rim seal is accounted for as well as the actual geometry of the squealer tip. A new set of conjugate results is compared with temperature obtained by metallographic analysis, pointing out the relevant effect of the actual endwall contour on the metal temperature distribution at low spans of the blade.


Author(s):  
Kazuhiro Tsukamoto ◽  
Yasuhiro Horiuchi ◽  
Kazuyuki Sugimura ◽  
Shinichi Higuchi

Conjugate Heat Transfer (CHT) was analyzed in a first stage rotor blade in an actual gas turbine. The main objectives of this research were to simulate and validate improvements to the accuracy of predicting temperature on the surfaces of rotor blades in a gas turbine and compare these with experimental results. This simulation was carried out under similar conditions to those during gas turbine operation. Computational grids were generated based on CAD data obtained from the rotor blades with fully resolved rib turbulators and pin fins for both fluid and solid domains during CHT analysis. A tetrahedral mesh with prism layers was used and the y+ of the first mesh adjacent to the wall was kept at less than 1.0 over the whole surface. Thermal barrier coating was modeled by adding thermal resistance at the fluid-solid interfaces. Inlet boundary conditions for the external- and internal-gas-flow regions were defined based on one-dimensional analysis and measured results. Steady Reynolds-averaged Navier-Stokes simulation was carried out using the Shear Stress Transport (SST) turbulence model. The simulated results were compared with measured data obtained from a pyrometer and thermocouple. The temperature distributions predicted from CHT analysis agreed with those obtained from an experiment near the leading edge of the rotor blades. However, the temperature distribution at the center of the pressure side had a difference of 50 K with that obtained from the experimental data. The heat transfer coefficients on the surfaces of the blades were almost equal to those on the pressure side. Thus, we considered that the internal cooling flows contributed more to temperature distributions on the surfaces of the blades rather than the external gas flows. The main stream in the internal cooling flow passages leaned toward one side of the walls and the temperatures on this side became lower than those obtained from the experimental results. Therefore, we suspect CHT analysis underestimated the mixing effect generated by the rib turbulators. It is important to solve the complex flow phenomena in internal cooling passages to better predict the accuracy of temperature distributions on the surfaces of blades.


Author(s):  
Toshihiko Takahashi ◽  
Kazunori Watanabe ◽  
Takayuki Sakai

In order to predict temperature distribution of a rotor blade in a gas turbine on a rated condition, numerical analyses of conjugate heat transfer of the internally cooled blade were conducted. The target blade has rib-roughened internal cooling passages. Three-dimensional steady-state numerical analysis was executed with one-dimensional thermo-flow calculation of internal cooling by means of thermal conjugation of inside and outside fields of the blade, which consists of convection heat transfer around the blade, thermal conduction of the blade material and internal cooling. The one-dimensional thermo-flow calculation for the internal cooling was conducted with correlations of friction and heat transfer in rib-roughened channels, and combined with the 3-D analysis of the blade. The present prediction of the temperature profile on the blade coincides with the distinctive features of damage on actual ex-service blades. Moreover, that predicted temperature profile is in agreement with local temperature estimated by using the material of the actual ex-service blades. Influences of distribution of inlet gas temperature and of cooling conditions on the blade temperature were also investigated by using the present numerical procedure.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2096
Author(s):  
Joon Ahn ◽  
Jeong Chul Song ◽  
Joon Sik Lee

Large eddy simulations are performed to analyze the conjugate heat transfer of turbulent flow in a ribbed channel with a heat-conducting solid wall. An immersed boundary method (IBM) is used to determine the effect of heat transfer in the solid region on that in the fluid region in a unitary computational domain. To satisfy the continuity of the heat flux at the solid–fluid interface, effective conductivity is introduced. By applying the IBM, it is possible to fully couple the convection on the fluid side and the conduction inside the solid and use a dynamic subgrid scale model in a Cartesian grid. The blockage ratio (e/H) is set at 0.1, which is typical for gas turbine blades. Through conjugate heat transfer analysis, it is confirmed that the heat transfer peak in front of the rib occurs because of the impinging of the reattached flow and not the influence of the thermal boundary condition. When the rib turbulator acts as a fin, its efficiency and effectiveness are predicted to be 98.9% and 8.32, respectively. When considering conjugate heat transfer, the total heat transfer rate is reduced by 3% compared with that of the isothermal wall. The typical Biot number at the internal cooling passage of a gas turbine is <0.1, and the use of the rib height as the characteristic length better represents the heat transfer of the rib.


Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side while the leading edge is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and high-pressure vanes are then investigated considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first one where hot spot and swirl core are aligned with passage and the second one where they are aligned with the leading edge. Comparisons between metal temperature distributions obtained from conjugate heat transfer simulations are performed evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The leading edge aligned configuration is resulted to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage aligned case. A strong sensitivity of both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


Author(s):  
Kuo-San Ho ◽  
Christopher Urwiller ◽  
S. Murthy Konan ◽  
Jong S. Liu ◽  
Bruno Aguilar

This paper explores the conjugate heat transfer (CHT) numerical simulation approach to calculate the metal temperature for the gas turbine cooled stator. ANSYS CFX12.1 code was selected to be the computational fluid dynamic (CFD) tool to perform the CHT simulation. The 2-equation RNG k-ε turbulence model with scalable modified wall function was employed. A full engine test with thermocouple measurement was performed and used to validate the CHT results. Metal temperatures calculated with the CHT model were compared to engine test data. The results demonstrated good agreement between test data and airfoil metal temperatures and cooling flow temperatures using the CHT model. However, the CHT calculations in the outer end wall had a discrepancy compared to the measured temperatures, which was due to the fact that the CHT model assumed an adiabatic wall as a boundary condition. This paper presents a process to calculate convection heat transfer coefficient (HTC) for cooling passages and airfoil surfaces using CHT results. This process is possible because local wall heat flux and fluid temperatures are known. This approach assists in calibrating an in-house conduction thermal model for steady state and transient thermal analyses.


Sign in / Sign up

Export Citation Format

Share Document