Unsteady Performance Prediction of a Single Entry Mixed Flow Turbine Using 1-D Gas Dynamic Code Extended With Meanline Model

Author(s):  
Meng Soon Chiong ◽  
Srithar Rajoo ◽  
Alessandro Romagnoli ◽  
Ricardo Martinez-Botas

Turbochargers are widely regarded as one of the most promising enabling technology for engine downsizing, in the aim to achieve better specific fuel consumption, thermal efficiency and most importantly carbon reduction. The increasing demand for higher quality engine-turbocharger matching, leads to the development of computational models capable of predicting the unsteady behaviour of a turbocharger turbine when subjected to pulsating inlet flow. Due to the wide range of engine loads and speed variations, an automotive turbocharger turbine model must be able to render all the frequency range of a typical exhaust pulse flow. A purely one-dimensional (1-D) turbine model is capable of good unsteady swallowing capacity prediction, provided it is accurately validated. However, the unsteady turbine power evaluation still heavily relies on the quasi-steady assumption. On the other hand, meanline model is capable of resolving the turbine work output but it is limited to steady state flow due to its zero dimensional nature. This paper explores an alternative methodology to realize turbine unsteady power prediction in 1-D by integrating these two independent modelling methods. A single entry mixed-flow turbine is first modelled using 1-D gas dynamic method to solve the unsteady flow propagation in turbine volute while the instantaneous turbine power is subsequently evaluated using a mean-line model. The key in the effectiveness of this methodology relies on the synchronization of the flow information with different time-scales. In addition to the turbine performance parameters, the common level of unsteadiness was also compared based on the Strouhal number evaluations. Comparison of the quasi-steady assumption using the experiment results was made in order to further understand the strength and weaknesses of corresponding method in unsteady turbine performance prediction. The outcomes of the simulation showed a good agreement in the shape and trend profile for the instantaneous turbine power. Meanwhile the predicted cycle-averaged value indicates a positive potential of the current turbine model to be expanded to a whole engine simulation after few minor improvements.

2015 ◽  
Vol 77 (8) ◽  
Author(s):  
Meng Soon Chiong ◽  
Muhamad Hasbullah Padzillah ◽  
Srithar Rajoo ◽  
Alessandro Romagnoli ◽  
Aaron W. Costall ◽  
...  

The pulse flow performance of a turbocharger turbine is known to be different than its corresponding steady flow performance. This often leads to less-than-satisfactory 1D engine model prediction. In this study, the effectiveness of a 1D pulse flow turbine model is assessed against experimental data with the aid of 3D CFD model. The turbine under study is a single-entry variable geometry mixed-flow turbine. The result shows highly comparable pulse flow swallowing capacity and actual power characteristics between 1D and 3D models. The over-prediction in 1D actual power magnitude is found to be due to the simplification of combining nozzle and rotor stage pressure loss together.


1970 ◽  
Vol 92 (3) ◽  
pp. 252-256 ◽  
Author(s):  
J. Dunham ◽  
P. M. Came

In 1951 Ainley and Mathieson published a method of predicting the design and off-design performance of an axial turbine (British ARC, R & M 2974). The flow and hence the losses were calculated at a single “reference diameter” for each blade row. This method has been widely used ever since. A critical review of the method has been made, based on detailed comparisons between the measured and predicted performance of a wide range of modern turbines. As a result, improvements have been made in the formulas for secondary loss and tip clearance loss prediction. The accuracy of the improved method has been assessed. Despite its relatively simple approach, it is believed that it will remain of great value in project work and preliminary design work.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Richard Morrison ◽  
Stephen Spence ◽  
Sung In Kim ◽  
Thomas Leonard ◽  
Andre Starke

Abstract Current trends in the automotive industry have placed an increased emphasis on downsized turbocharged engines for passenger vehicles. The turbocharger is increasingly relied upon to improve power output across a wide range of engine operating conditions, placing a greater emphasis on turbocharger off-design performance. An off-design condition of significant importance is performance at low turbine velocity ratios, since it is relevant to engine transient response and also to efficient energy extraction from pressure pulses in the unsteady exhaust flow. An increased focus has been placed on equipping turbochargers with mixed flow turbine rotors instead of conventional radial flow turbine rotors to improve off-design performance and to reduce rotor inertia. A recognized feature of a mixed flow turbine is the spanwise variation of flow conditions across the blade leading edge. This is a consequence of the reduction in leading edge radius from shroud to hub, coupled with the increasing tangential velocity of the flow due to conserved angular momentum as the radius decreases. The result is increasingly positive incidence toward the hub side of the leading edge. The resulting region of highly positive incidence at the hub produces separation from the suction surface and generates significant loss within the rotor passage. The aim of this study was to determine if the losses in a mixed flow turbine (MFT) could be reduced by the use of leaned stator vanes, which deliberately created a significant spanwise variation of flow angle between hub and shroud at rotor inlet, to reduce the positive incidence at the hub. The turbine performance with a series of leaned vanes was compared against that of a straight vane using a validated computational fluid dynamics (CFD) model. It was found that increasing vane lean improved turbine performance at all operating points considered. An increase of 3.2 percentage points in stage total-to-static efficiency was achieved at a key off-design operating point. Experimental testing of a set of leaned vanes and the baseline vanes confirmed the advantage of the leaned vanes at all operating points, with an increase in measured efficiency of 2.6 percentage points at the key off-design condition. Unsteady CFD models confirmed the same level of improvement at this operating point. The CFD and experimental results confirmed that the losses in an MFT can be reduced by the use of leaned stator vanes to shape the flow at rotor inlet.


Author(s):  
Richard Morrison ◽  
Stephen Spence ◽  
Sung In Kim ◽  
Thomas Leonard ◽  
Andre Starke

Abstract Current trends in the automotive industry have placed an increased emphasis on downsized turbocharged engines for passenger vehicles. The turbocharger is increasingly relied upon to improve power output across a wide range of engine operating conditions, placing a greater emphasis on turbocharger offdesign performance. An off-design condition of significant importance is performance at low turbine velocity ratios, since it is relevant to engine transient response and also to efficient energy extraction from pressure pulses in the unsteady exhaust flow. An increased focus has been placed on equipping turbochargers with mixed flow turbine rotors instead of conventional radial flow turbine rotors to improve off-design performance and to reduce rotor inertia. A recognized feature of a mixed flow turbine is the spanwise variation of flow conditions across the blade leading edge. This is a consequence of the reduction in leading edge radius from shroud to hub, coupled with the increasing tangential velocity of the flow due to conserved angular momentum as the radius decreases. The result is increasingly positive incidence towards the hub side of the leading edge. The resulting region of highly positive incidence at the hub produces separation from the suction surface and generates significant loss within the rotor passage. The aim of this study was to determine if the losses in a MFT could be reduced by the use of leaned stator vanes, which deliberately created a significant spanwise variation of flow angle between hub and shroud at rotor inlet, to reduce the positive incidence at the hub. The turbine performance with a series of leaned vanes was compared against that of a straight vane using a validated CFD model. It was found that increasing vane lean improved turbine performance at all operating points considered. An increase of 3.2 percentage points in stage total-to-static efficiency was achieved at a key off-design operating point. Experimental testing of a set of leaned vanes and the baseline vanes confirmed the advantage of the leaned vanes at all operating points, with an increase in measured efficiency of 2.6 percentage points at the key off-design condition. Unsteady CFD models confirmed the same level of improvement at this operating point. The CFD and experimental results confirmed that the losses in a MFT can be reduced by the use of leaned stator vanes to shape the flow at rotor inlet.


Author(s):  
M.G. Yagodin ◽  
E.I. Starovoytenko

The equipment for the production of wide range of metal powders purposed for powder metallurgy is described. The possibility for producing of powders by the plasma centrifugal spraying is considered taking into account the gas dynamic pressure. The calculated data on the powder size for different materials are given.


Author(s):  
P.G Young ◽  
T.B.H Beresford-West ◽  
S.R.L Coward ◽  
B Notarberardino ◽  
B Walker ◽  
...  

Image-based meshing is opening up exciting new possibilities for the application of computational continuum mechanics methods (finite-element and computational fluid dynamics) to a wide range of biomechanical and biomedical problems that were previously intractable owing to the difficulty in obtaining suitably realistic models. Innovative surface and volume mesh generation techniques have recently been developed, which convert three-dimensional imaging data, as obtained from magnetic resonance imaging, computed tomography, micro-CT and ultrasound, for example, directly into meshes suitable for use in physics-based simulations. These techniques have several key advantages, including the ability to robustly generate meshes for topologies of arbitrary complexity (such as bioscaffolds or composite micro-architectures) and with any number of constituent materials (multi-part modelling), providing meshes in which the geometric accuracy of mesh domains is only dependent on the image accuracy (image-based accuracy) and the ability for certain problems to model material inhomogeneity by assigning the properties based on image signal strength. Commonly used mesh generation techniques will be compared with the proposed enhanced volumetric marching cubes (EVoMaCs) approach and some issues specific to simulations based on three-dimensional image data will be discussed. A number of case studies will be presented to illustrate how these techniques can be used effectively across a wide range of problems from characterization of micro-scaffolds through to head impact modelling.


1968 ◽  
Vol 90 (4) ◽  
pp. 349-359 ◽  
Author(s):  
O. E. Balje´ ◽  
R. L. Binsley

The maximum obtainable efficiency and associated geometry have been calculated based on the use of generalized loss correlations from Part A and are presented for full and partial admission turbines over a wide range of specific speeds. The calculated effects of varying values of Reynolds number, tip clearance, and trailing edge thickness on turbine performance are presented. Because of the anticipated difficulty in fabricating some of the optimum geometries calculated, the effects of using nonoptimum values of geometric parameters on attainable efficiency have also been investigated. The derating factor for machine Reynolds number is shown to be a strong function of specific speed, varying from 0.96 at a specific speed of 100, to 0.6 at a specific speed of 3, when Reynolds number is 105 compared to a reference value of 106. The derating factor for tip clearance is shown to be similar to what would be expected if the clearance area were considered as a leakage area. The use of blade heights, blade numbers, rotor exit angles, and degrees of reaction varying from the optimum by 25 percent produce maximum derating factors of 0.99, 0.98, 0.985, and 0.97, respectively, when compared to full optimum values.


Sign in / Sign up

Export Citation Format

Share Document