Through Flow Matching of Power Turbine for a Turbo-Compounded Diesel Engine

Author(s):  
Rongchao Zhao ◽  
Weilin Zhuge ◽  
Yangjun Zhang ◽  
Yong Yin ◽  
Zhigang Li ◽  
...  

Turbo-compounding (TC) is a possible solution to make transportation more ecological. Matching the engine with an appropriate power turbine is the key for the turbo-compounded engine performance optimization. Conventionally, the matching work is based on a turbine map. The influences of the turbine geometry parameters on the engine performance are taken into account. A new matching method based on the turbine through flow model is presented in this paper. The influences of geometry parameters of the power turbine on the diesel engine performance are investigated. The research focuses on the effects of inlet blade radius and height, exit blade angle and tip radius of the power turbine on the engine BSFC and torque. Results show that the outlet blade angle and tip radius have stronger impacts on BSFC and torque of the engine than the inlet blade radius and height. Further studies show that the engine cycle and air mass flow rate are more sensitive to the outlet blade tip radius and angle than the inlet blade radius and height.

2013 ◽  
Vol 860-863 ◽  
pp. 1703-1709 ◽  
Author(s):  
Xian Jun Hou ◽  
Shu Chen ◽  
Zhi'en Liu

A calculation model of turbocharged diesel engine was developed based on one-dimension simulation software GT-power,which can provide a steady boundary condition for the flow field analysis of EGR system.The three-dimension simulation software Fluent was applied in establishing the flow field model of the air-intake system under different air inlet position to analize the distribution of the exhaust gas,and then obtained the impact of the EGRs air-inlet position to uniformity of EGR system, thereby we could acquire the parameters which achieves the best maching between the EGR system and the diesel engine, it also provided a reference for engine performance optimization.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Alberto Scotti Del Greco ◽  
Vittorio Michelassi ◽  
Stefano Francini ◽  
Daniele Di Benedetto ◽  
Mahendran Manoharan

Gas turbines engine designers are leaning toward aircraft engine architectures due to their footprint, weight, and performance advantages. Such engines need some modifications to both the combustion system, to comply with emission limits, and turbine rotational speed. Aeroderivative engines maintain the same legacy aircraft engine architecture and replace the fan and booster with a higher speed compressor booster driven by a single-stage intermediate turbine. A multistage free power turbine (FPT) sits on a separate shaft to drive compressors for liquefied natural gas (LNG) applications or generators. The intermediate-power turbine (IPT) design is important for the engine performance as it drives the booster compressor and sets the inlet boundary conditions to the downstream power turbine. This paper describes the experience of Baker Hughes, a GE company (BHGE) in the design of the intermediate turbine that sits in between a GE legacy aircraft engine core exhaust and the downstream power turbine. This paper focuses on the flow path of the turbine center frame (TCF)/intermediate turbine and the associated design, as well as on the 3D steady and unsteady computational fluid dynamics (CFD)-assisted design of the IPT stage to control secondary flows in presence of through flow curvature induced by the upstream TCF.


2011 ◽  
Vol 354-355 ◽  
pp. 541-547
Author(s):  
Kun Peng Qi ◽  
Huo Lei Chen ◽  
Wu Qiang Long ◽  
Hong Gu

In this paper, a phase-divided spray mixing model is proposed and the quasi-dimensional model of diesel engine working process is developed. The software MATLAB/Simulink is utilized to build the quasi-dimensional model of diesel engine working process, and the performance for diesel engine is simulated. The simulation results agree with experimental data quite well which indicates that the simplified quasi-dimensional model has high precision for predicting diesel engine performance. By utilization of this simulation model, the average computational time for one diesel engine working process is 36 s, which presents good real time operating performance of the model. On the basis of the principle of orthogonal test design, the performance of diesel engine was optimized by use of the quasi-dimensional model.


Author(s):  
Zhanming Ding ◽  
Weilin Zhuge ◽  
Yangjun Zhang ◽  
Yong Yin ◽  
Shuyong Zhang

Waste heat recovery (WHR) is one of the main approaches to improve the internal combustion engine (ICE) overall efficiency and reduce emissions. The electric turbocompounding (ETC) technology is considered as a promising WHR technology for vehicle engines due to its compactness and light weight. In order to improve the overall fuel efficiency of the engine at practical operating conditions, the impacts of the implementation of the ETC system should be investigated not only at engine full load conditions, but also under practical driving cycles. In this paper, an ETC system was designed for a 4.75 L diesel engine, in which a power turbine was installed down-stream to the turbocharger turbine. A performance simulation model of the ETC engine was developed on the basis of the diesel engine model, which was validated against engine performance experimental data. The control strategies of the wastegate of turbocharger turbine, the wastegate of power turbine and the operating torque of generator were determined. The relative variation in BSFC was studied under full range of operating conditions, and results show that the maximum improvement of fuel economy is 6.7% at an engine speed of 1000 rpm and 70% of full load, in comparison with the baseline diesel engine. Main factors lead to the performance differences between the ETC engine and the baseline engine were analyzed. Furthermore, the performance of the ETC engine under the C-WTVC driving cycle was investigated. Results show that the implementation of the ETC system resulted in a 1.2% fuel consumption reduction under the C-WTVC driving cycle.


Author(s):  
Syed Ammad ud Din ◽  
Weilin Zhuge ◽  
Panpan Song ◽  
Yangjun Zhang

Downsizing a diesel engine using turbocharger and coupling it with exhaust gas recirculation is the recent trend to improve engine performance and emission control. For diesel engines, it is important to match a turbocharger that meets both the low-speed torque and high-speed power requirements. This article presents a method of turbocharger design optimization for a turbocharged diesel engine equipped with exhaust gas recirculation, on the basis of parametric study of turbocharger geometry. Turbocharger through-flow model along with one-dimensional engine model is used to study the effect of key geometric parameters of the compressor and turbine on engine brake torque, brake-specific fuel consumption, air flowrate and cylinder peak temperature. For compressor, the research emphasizes on impeller inlet relative diameter, inlet blade tip angle, impeller exit blade angle and exit blade height, while for turbine parameters such as volute throat area, inlet blade height, inlet diameter, outlet diameter and rotor exit blade angle are taken into account. Results show that in case of compressor, engine performance is sensitive to the inlet relative diameter, inlet blade angle and exit blade angle. In case of turbine, volute throat area, inlet blade height and inlet diameter have vital effect on engine performance. On the basis of results, an optimized turbocharger design is developed. Comparison shows prominent improvement in turbocharger maps and engine performance. Compressor maximum efficiency and pressure ratio are increased from 73% to 77% and 3.166 to 3.305, respectively. Most importantly, the area of compressor maximum efficiency zone is increased considerably. Also turbine efficiency is increased from 71.42% to 76.94%. As a result, engine torque and air flowrate are increased up to 5.26% and 8.31%, respectively, while brake-specific fuel consumption and cylinder peak temperature are decreased up to 5.00% and 4.31%, respectively.


2014 ◽  
Vol 633-634 ◽  
pp. 836-840
Author(s):  
Jun Fu ◽  
Wei Chen ◽  
Yuan Tang ◽  
Guang Ming Li ◽  
Yi Ma ◽  
...  

In order to improve the acoustic attenuation performance of agricultural diesel engine exhaust muffler, take the 175 series air-cooled diesel engine as the example. Based on the original exhaust muffler structure and kept the same size of mesh partition aperture and mesh radial distribution, the four groups of different pore density schemes (14 pores/cm2,19 pores /cm2,10 pores /cm2,15 pores /cm2) are designed. The laboratory measurements are used to research the influence of different pore density exhaust muffler effect on the acoustic attenuation performance of the diesel engine. The tests indicated that the No.4 scheme did not increase the power loss, meanwhile, improved the performance of exhaust muffler noise reduction effectively, and the amount of noise elimination increased about 2~4dB(A), which provide theoretical basis for further research of performance optimization of the exhaust muffler.


Author(s):  
Alberto Scotti Del Greco ◽  
Vittorio Michelassi ◽  
Stefano Francini ◽  
Daniele Di Benedetto ◽  
Mahendran Manoharan

Gas turbines engine designers are leaning towards aircraft engine architectures due to their footprint, weight, and performance advantages. Such engines need some modifications to both the combustion system, to comply with emission limits, and turbine rotational speed. Aero derivative engines maintain the same legacy aircraft engine architecture, and replace the fan and booster with higher speed compressor booster driven by a single stage intermediate turbine. A multistage free power turbine (FPT) sits on a separate shaft to drive compressors for Liquefied Natural Gas (LNG) applications or generators. The intermediate power turbine (IPT) design is important for the engine performance as it drives the booster compressor and sets the inlet boundary conditions to the downstream power turbine. This paper describes the experience of Baker Hughes, a GE company (BHGE) in the design of the intermediate turbine that sits in between a GE legacy aircraft engine core exhaust and the downstream power turbine. This paper focuses on the flow path of the TCF/intermediate turbine and the associated design, as well as on the 3D steady and unsteady CFD assisted design of the IPT stage to control secondary flows in presence of through flow curvature induced by the upstream TCF.


2017 ◽  
Vol 11 (4) ◽  
pp. 213
Author(s):  
Mohamad Nordin Mohamad Norani ◽  
Boon Tuan Tee ◽  
Zakaria Muhammad Zulfattah ◽  
Mohamad Norani Mansor ◽  
Md Isa Ali

Sign in / Sign up

Export Citation Format

Share Document