CFD Predictions of Isothermal Fuel-Air Mixing in a Radial Swirl Low NOx Combustor Using Various RANS Turbulence Models

Author(s):  
Phil T. King ◽  
Gordon E. Andrews ◽  
Mohamed M. Pourkashanian ◽  
Andy C. McIntosh

A radial swirl DLE combustion system was investigated for its gaseous fuel-air mixing performance using various different RANS turbulence models. Two different configurations were investigated; vane passage fuel injection and fuel injection from the wall of an outlet throat directly into the shear layer. The results showed that for vane passage fuel injection, only the standard k-ε and standard Spalart-Allmaras models were able to provide a reasonable prediction for the combustor fuel-air distribution, out of all the RANS models and their variants available in Fluent v6.3, although both models predicted that the fuel and air were better mixed than in the measurements. For outlet throat wall fuel injection no models were able to provide a reasonable prediction. This same issue is also reported by several other researchers and represents a serious problem area in combustion modeling for low NOx applications. Improved fuel jet penetration was achieved by using an extremely low value of 0.1 for the turbulent Schmidt number, therefore future work will concentrate on using a localized value of Sc in the vicinity of the fuel injection hole.

Author(s):  
Snehaunshu Chowdhury ◽  
Razi Nalim ◽  
Thomas M. Sine

Emission controls in stationary gas engines have required significant modifications to the fuel injection and combustion processes. One approach has been the use of high-pressure fuel injection to improve fuel-air mixing. The objective of this study is to simulate numerically the injection of gaseous fuel at high pressure in a large-bore two-stroke engine. Existing combustion chamber geometry is modeled together with proposed valve geometry. The StarCD® fluid dynamics code is used for the simulations, using appropriate turbulence models. High-pressure injection of up to 500 psig methane into cylinder air initially at 25 psig is simulated with the valve opened instantaneously and piston position frozen at the 60 degrees ABDC position. Fuel flow rate across the valve throat varies with the instantaneous pressure but attains a steady state in approximately 22 ms. As expected with the throat shape and pressures, the flow becomes supersonic past the choked valve gap, but returns to a subsonic state upon deflection by a shroud that successfully directs the flow more centrally. This indicates the need for careful shroud design to direct the flow without significant deceleration. Pressures below 300 psig were not effective with the proposed valve geometry. A persistent re-circulation zone is observed immediately below the valve, where it does not help promote mixing.


Author(s):  
Amin Akbari ◽  
Scott Hill ◽  
Vincent McDonell ◽  
Scott Samuelsen

Hydrogen is a fuel of interest to the combustion community research as a promising sustainable alternative fuel to replace fossil fuels. The combustion of hydrogen produces only emission of water vapor and NOx. To alleviate the NOx emission, lean combustion has been proposed and utilized in last three decades for natural gas. Therefore, evaluation of mixing properties of both methane and hydrogen in lean combustion technology such as premixers is crucial for design purposes. Increased capability of computational systems has allowed tools such as computational fluid dynamics to be regularly used for purpose of design screening. In the present work, systematic evaluation of different CFD approaches is accomplished for axial injection of fuel into non swirling air. The study has been undertaken for both methane and hydrogen. Different Reynolds Averaged Navier Stokes (RANS) turbulence models including k–ε and RSM, which are relatively attractive as being computationally efficient, are evaluated. Further, the sensitivity of RANS models to different turbulent Schmidt number (Sct), as an important parameter in mass transport analysis, has been investigated. To evaluate the numerical results, fuel concentration is measured in different locations downstream of the injection point. This is accomplished by means of flame ionization detector (FID). Finally, a comprehensive comparison has been made between numerical and experimental results to identify the best numerical approach. To provide quantitative assessment, the simulations follow a statistically design matrix which allows analysis of variance to be used to identify the preferred simulation strategies. The results suggest high sensitivity of numerical results to different Sct and relatively low sensitivity to turbulence models. However, this general trend is the opposite for radial fuel injection.


Author(s):  
Amin Akbari ◽  
Scott Hill ◽  
Vincent McDonell ◽  
Scott Samuelsen

The mixing of fuel and air in combustion systems plays a key role in overall operability and emissions performance. Such systems are also being looked to for operation on a wide array of potential fuel types, including those derived from renewable sources such as biomass or agricultural waste. The optimization of premixers for such systems is greatly enhanced if efficient design tools can be utilized. The increased capability of computational systems has allowed tools such as computational fluid dynamics to be regularly used for such purpose. However, to be applied with confidence, validation is required. In the present work, a systematic evaluation of fuel mixing in a specific geometry which entails cross flow fuel injection into axial non-swirling air streams has been carried out for methane and hydrogen. Fuel concentration is measured at different planes downstream of the point of injection. In parallel, different CFD approaches are used to predict the concentration fields resulting from the mixing of fuel and air. Different steady turbulence models including variants of Reynolds Averaged Navier Stokes (RANS) have been applied. In addition, unsteady RANS and Large Eddy Simulation (LES) are used. To accomplish mass transport with any of the RANS approaches, the concept of the turbulent Schmidt number is generally used. As a result, the sensitivity of the RANS simulations to different turbulent Schmidt number values is also examined. In general, the results show that the Reynolds Stress Model, with use of an appropriate turbulent Schmidt number for the fuel used, provides the best agreement with the measured values of the variation in fuel distribution over a given plane in a relatively time efficient manner. It is also found that, for a fixed momentum flux ratio, both hydrogen and methane penetrate and disperse in a similar manner for the flowfield studied despite their significant differences in density and diffusivity.


Author(s):  
Marcos Batistella Lopes ◽  
Viviana Mariani ◽  
katia cordeiro ◽  
Claudine BEGHEIN

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 901
Author(s):  
Davide Bertini ◽  
Lorenzo Mazzei ◽  
Antonio Andreini

Computational Fluid Dynamics is a fundamental tool to simulate the flow field and the multi-physics nature of the phenomena involved in gas turbine combustors, supporting their design since the very preliminary phases. Standard steady state RANS turbulence models provide a reasonable prediction, despite some well-known limitations in reproducing the turbulent mixing in highly unsteady flows. Their affordable cost is ideal in the preliminary design steps, whereas, in the detailed phase of the design process, turbulence scale-resolving methods (such as LES or similar approaches) can be preferred to significantly improve the accuracy. Despite that, in dealing with multi-physics and multi-scale problems, as for Conjugate Heat Transfer (CHT) in presence of radiation, transient approaches are not always affordable and appropriate numerical treatments are necessary to properly account for the huge range of characteristics scales in space and time that occur when turbulence is resolved and heat conduction is simulated contextually. The present work describes an innovative methodology to perform CHT simulations accounting for multi-physics and multi-scale problems. Such methodology, named U-THERM3D, is applied for the metal temperature prediction of an annular aeroengine lean burn combustor. The theoretical formulations of the tool are described, together with its numerical implementation in the commercial CFD code ANSYS Fluent. The proposed approach is based on a time de-synchronization of the involved time dependent physics permitting to significantly speed up the calculation with respect to fully coupled strategy, preserving at the same time the effect of unsteady heat transfer on the final time averaged predicted metal temperature. The results of some preliminary assessment tests of its consistency and accuracy are reported before showing its exploitation on the real combustor. The results are compared against steady-state calculations and experimental data obtained by full annular tests at real scale conditions. The work confirms the importance of high-fidelity CFD approaches for the aerothermal prediction of liner metal temperature.


2021 ◽  
Vol 9 (3) ◽  
pp. 264
Author(s):  
Shanti Bhushan ◽  
Oumnia El Fajri ◽  
Graham Hubbard ◽  
Bradley Chambers ◽  
Christopher Kees

This study evaluates the capability of Navier–Stokes solvers in predicting forward and backward plunging breaking, including assessment of the effect of grid resolution, turbulence model, and VoF, CLSVoF interface models on predictions. For this purpose, 2D simulations are performed for four test cases: dam break, solitary wave run up on a slope, flow over a submerged bump, and solitary wave over a submerged rectangular obstacle. Plunging wave breaking involves high wave crest, plunger formation, and splash up, followed by second plunger, and chaotic water motions. Coarser grids reasonably predict the wave breaking features, but finer grids are required for accurate prediction of the splash up events. However, instabilities are triggered at the air–water interface (primarily for the air flow) on very fine grids, which induces surface peel-off or kinks and roll-up of the plunger tips. Reynolds averaged Navier–Stokes (RANS) turbulence models result in high eddy-viscosity in the air–water region which decays the fluid momentum and adversely affects the predictions. Both VoF and CLSVoF methods predict the large-scale plunging breaking characteristics well; however, they vary in the prediction of the finer details. The CLSVoF solver predicts the splash-up event and secondary plunger better than the VoF solver; however, the latter predicts the plunger shape better than the former for the solitary wave run-up on a slope case.


2017 ◽  
Vol 149 ◽  
pp. 150-159 ◽  
Author(s):  
Ian Pond ◽  
Alireza Ebadi ◽  
Yves Dubief ◽  
Christopher M. White

Sign in / Sign up

Export Citation Format

Share Document