Numerical Investigation of the Behavior of Tip Leakage Flow in a Low-Speed Axial Compressor Rotor at Near-Stall Condition

Author(s):  
Zhenzhen Duan ◽  
Yangwei Liu ◽  
Lipeng Lu

In the present work, time-accurate simulations were performed to investigate the unsteady flow fields in the tip region of a low-speed large-scale axial compressor rotor at near-stall condition. Firstly, the steady performance characteristic of the rotor was obtained by steady simulations. Secondly, a series of unsteady simulations were carried out to investigate the physical processes as the rotor approaching stall and the role of complex tip flow mechanism on flow instability in the rotor. The characteristics of tip leakage vortex were compared between design condition and near-stall condition. Detailed analyses were then employed to emphasize the development of stall inception and the comprehensions of the internal flow field. Two flow phenomena, spillage at the leading edge and backflow at the trailing edge, are found beyond the flow solution limit, which are both linked to the tip leakage flow. And the breakdown of the tip leakage vortex has been captured. The flow visualization and the quantification of passage blockage expose that the tip leakage vortex and corner vortex contribute most to the total passage blockage. Therefore, they are considered to be the key flow structures contributing to the rotating stall. Further analyses indicate that, in the current rotor, the interaction of the tip leakage flow and the corner vortex is clarified to be the key factor that leads to the rotating stall. In addition, the very initial disturbances of stall inception are discussed. And the interaction of the boundary layer migration on the blade suction side and the tip leakage vortex also plays a significant role in the stall inception.

2014 ◽  
Vol 543-547 ◽  
pp. 158-163 ◽  
Author(s):  
Zhen Zhen Duan ◽  
Yang Wei Liu ◽  
Li Peng Lu

The simulations of a low-speed axial compressor rotor with two tip clearance sizes, 0.5% chord and 1.5% chord, were performed in the study. Overall performance and detailed flow fields at near stall condition are analyzed. The results show that the rotor stall occurs at higher mass flow condition with large tip clearance. For the small tip clearance the tip leakage vortex and the corner vortex both contribute significantly to the rotor stall, and the interaction between the vortices promotes the stall generation. While for the large tip clearance the tip leakage vortex plays a primary role, and the vortices interaction is ignorable.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095107
Author(s):  
Jun Li ◽  
Jun Hu ◽  
Chenkai Zhang

Casing pressure measurements and Stereoscopic Particle-Image Velocimetry (SPIV) measurements are used together to characterize the behavior of the rotor tip leakage flow at both the design and near-stall conditions in a low-speed multistage axial compressor. A three-dimensional Navier-Stokes solver is also performed for the multistage compressor and the prediction of tip leakage flow is compared with SPIV data and casing dynamic static pressure data. During the experiment 10 high-frequency Kulite transducers are mounted in the outer casing of the rotor 3 to investigate the complex flow near the compressor casing and Fourier analyses of the dynamic static pressure on the casing of the rotor 3 are carried out to investigate the tip leakage flow characteristics. At the same time, the two CCD cameras are arranged at the same side of the laser light sheet, which is suitable for investigating unsteady tip leakage flow in the multistage axial compressor. The SPIV measurements identify that the tip leakage flow exists in the rotor passage. The influence of tip leakage flow leads to the existence of low axial velocity region in the rotor passage and the alternating regions of positive and negative radial velocity indicates the emergence of tip leakage vortex (TLV). The trajectory of the tip leakage vortex moves from the suction surface toward the pressure surface of adjacent blade, which is aligned close to the rotor at the design point (DP). However, the tip leakage vortex becomes unstable and breaks down at the near-stall point (NS), making the vortex trajectory move upstream in the rotor passage and causing a large blockage in the middle of the passage.


Author(s):  
Limin Gao ◽  
Ruiyu Li ◽  
Fang Miao ◽  
Yutong Cai

Contra-rotating axial compressor/fan (CRAC) is a promising technology to meet the future goals aircraft industry. Massive time accurate simulations are performed to investigate rotating stall in CRAC containing two counter-rotating rotors. Particularly, the back pressure increasing with a very small step to avoid missing flow field transition from stability to instability. Due to the canceling of the stator, the instability of downstream rotor is more stronger. The present studies mostly focus on the downstream rotor. The tip leakage flow field is analyzed in detail under near stall condition, which indicates that a secondary leakage flow plays an important role in the unsteadiness of CRAC's unsteady flow field. The frequency analysis in the tip clearance of downstream rotor under multiple near stall conditions captured the transition of the second harmonic frequency which can be used as stall inception signal. Moreover, the rotating stall onset process in real CRAC is simulated on the numerical stall.


Author(s):  
Chenkai Zhang ◽  
Jun Hu ◽  
Zhiqiang Wang ◽  
Wei Yan ◽  
Chao Yin ◽  
...  

To deepen the knowledge of tip leakage flow/vortex flow structure in the tip clearance of axial compressor rotors, this paper presents steady numerical studies on a subsonic rotor. The rotor and its related low-speed large-scale repeating-stage axial compressor are used for low-speed model testing of a modern high-pressure compressor. Results were first compared with available experimental data to validate adopted numerical method. Then complex endwall flow structure and flow loss mechanism at design operating point were studied. At last, comparisons were made for tip leakage vortex structure, interface of the leakage flow/main flow, endwall blockage and loss between design and near-stall operating points. Results show that only the spilled flows below 62.5% clearance height at the leading edge will roll into tip leakage vortex for this rotor. In addition, tip leakage vortex plays a secondary important role for higher positions, where secondary leakage flow occurs and occupies broader chordwise range. Although tip leakage vortex would expand and strongly mix with the mainflow when it propagates downstream, which leads to a rapid reduction of the normalized streamwise vorticity, the value of the normalized helicity shows that concentrated vortex feature is still maintained.


Author(s):  
Shraman Goswami ◽  
Ashima Malhotra

Abstract Performance of an axial compressor rotor depends largely on the tip leakage flow. Tip leakage flow results in tip leakage vortex which is a source of loss. This has an impact on the compressor efficiency as well as stall margin. A lot of work has been done to understand the tip leakage flow and controlling the same. Active and passive stall margin improvement methods mainly target the tip leakage vortex. In the current study, numerical investigations are carried out to understand flow fields near tip region of rotors. The blade tip designed to have a tip gap as sine and cosine waves (single and double waves). Numerical methodology is validated with NASA Rotor37 test results. The performance parameters of the rotors with modified tip gap shapes are compared with constant tip clearance rotor. A detailed flow field investigation is presented to compare the tip flow structure and its impact on overall performance of the compressor.


Author(s):  
Xiaochen Mao ◽  
Bo Liu

Unsteady computations of a counter-rotating axial compressor are performed and analyzed to investigate the unsteady behaviors in the compressor and the role of the tip leakage flow together with the rotating stall inception process. The results show that the oscillation on the pressure side is much stronger than that on the suction surface for both rotors, especially near the tip region where the trajectory of the tip leakage vortex (TLV) interacts with the blades most often. There exists a periodical leading edge spillage of the interface in rotor2 due to the unsteadiness of tip leakage flow (TLF) at near-stall condition. The blockage generated by the TLV increases dramatically due to the increasing strength of the TLV and the backflow phenomenon as the mass flow decreased. The appearance of the frequency components of 0.5 blade passing frequency (BPF) and 1.5BPF from 0.64BPF can be viewed as the rotating stall inception warning. The fluctuation strength of oscillation frequencies of 0.5BPF and 1.5BPF decreases rapidly from leading edge to trailing edge in rotor2, which indicates that the unsteady fluctuation of TLF at the leading edge in rotor2 is responsible for the stall inception of the compressor. Additionally, both the leading edge spillage and trailing edge backflow phenomena are observed for spike initiated rotating stall at stall point.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


Author(s):  
Martina Ricci ◽  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Andrea Arnone

Abstract The tip leakage flow in turbine and compressor blade rows is responsible for a relevant fraction of the total loss. It contributes to unsteadiness, and have an important impact on the operability range of compressor stages. Experimental investigations and, more recently, scale-resolving CFD approaches have helped in clarifying the flow mechanism determining the dynamics of the tip leakage vortex. Due to their continuing fundamental role in design verifications, it is important to establish whether RANS/URANS approaches are able to reproduce the effects of such a flow feature, in order to correctly drive the design of the next generation of turbomachinery. Base studies are needed in order to accomplish this goal. In the present work the tip leakage flow in axial compressor rotor blade cascade have been studied. The cascade was tested experimentally in Virginia Tech Low Speed Cascade Wind Tunnel in both stationary and moving endwall configurations. Numerical analyses were performed using the TRAF code, a state-of-the-art in-house-developed 3D RANS/URANS flow solver. The impact of the numerical framework was investigated selecting different advection schemes including a central scheme with artificial dissipation and a high-resolution upwind strategy. In addition, two turbulence models have been used, the Wilcox linear k–ω model and a non-linear eddy viscosity model (Realizable Quadratic Eddy Viscosity Model), which accounts for turbulence anisotropy. The numerical results are scrutinized using the available measurements. A detailed discussion of the vortex evolution inside the blade passage and downstream of the blade trailing edge is presented in terms of streamwise velocity, streamwise vorticity, and turbulent kinetic energy contours. The purpose is to identify guidelines for obtaining the best representation of the vortex dynamics, with the methodologies usually employed in routine design iterations and, at the same time, evidence their weak aspects that need further modelling efforts.


2014 ◽  
Vol 30 (3) ◽  
pp. 307-313 ◽  
Author(s):  
R. Taghavi-Zenou ◽  
S. Abbasi ◽  
S. Eslami

ABSTRACTThis paper deals with tip leakage flow structure in subsonic axial compressor rotor blades row under different operating conditions. Analyses are based on flow simulation utilizing computational fluid dynamic technique. Three different circumstances at near stall condition are considered in this respect. Tip leakage flow frequency spectrum was studied through surveying instantaneous static pressure signals imposed on blades surfaces. Results at the highest flow rate, close to the stall condition, showed that the tip vortex flow fluctuates with a frequency close to the blade passing frequency. In addition, pressure signals remained unchanged with time. Moreover, equal pressure fluctuations at different passages guaranteed no peripheral disturbances. Tip leakage flow frequency decreased with reduction of the mass flow rate and its structure was changing with time. Spillage of the tip leakage flow from the blade leading edge occurred without any backflow in the trailing edge region. Consequently, various flow structures were observed within every passage between two adjacent blades. Further decrease in the mass flow rate provided conditions where the spilled flow ahead of the blade leading edge together with trailing edge backflow caused spike stall to occur. This latter phenomenon was accompanied by lower frequencies and higher amplitudes of the pressure signals. Further revolution of the rotor blade row caused the spike stall to eventuate to larger stall cells, which may be led to fully developed rotating stall.


Author(s):  
Zhibo Zhang ◽  
Xianjun Yu ◽  
Baojie Liu

The detailed evolutionary processes of the tip leakage flow/vortex inside the rotor passage are still not very clear for the difficulties of investigating of them by both experimental and numerical methods. In this paper, the flow fields near the rotor tip region inside the blade passage with two tip gaps, 0.5% and 1.5% blade height respectively, were measured by using stereoscopic particle image velocimetry (SPIV) in a large-scale low speed axial compressor test facility. The measurements are conducted at four different operating conditions, including the design, middle, maximum static pressure rise and near stall conditions. In order to analyze the variations of the characteristics of the tip leakage vortex (TLV), the trajectory, concentration, size, streamwise velocity, and the blockage parameters are extracted from the ensemble-averaged results and compared at different compressor operating conditions and tip gaps. The results show that the formation of the TLV is delayed with large tip clearance, however, its trajectory moves much faster in an approximately linear way from the blade suction side to pressure side. In the tested compressor, the size of the tip gap has little effects on the scale of the TLV in the spanwise direction, on the contrary, its effects on the pitch-wise direction is very prominent. Breakdown of the TLV were both found at the near-stall condition with different tip gaps. The location of the initiation of the TLV breakdown moves downstream from the 60% chord to 70% chord as the tip gap increases. After the TLV breakdown occurs, the flow blockage near the rotor tip region increases abruptly. The peak value of the blockage effects caused by the TLV breakdown is doubled with the tip gap size increasing from 0.5% to 1.5% blade span.


Sign in / Sign up

Export Citation Format

Share Document