Effect of Blockage-Ratio on Developing Heat Transfer for a Rectangular Duct With Transverse Ribs

Author(s):  
Zahra Ghorbani-Tari ◽  
Lei Wang ◽  
Bengt Sunden

The developing heat transfer characteristics in a rectangular channel (AR = 4) equipped with continuous transverse ribs are experimentally investigated. The ribs were regularly spaced over a section of the channel which was heated by a uniform heat flux. The blockage ratio e/Dh varied from 0.039 to 0.078. Two values of the rib pitch to rib height ratio (10 and 20) were considered, with the Reynolds number from 57,000 to 127, 000. The studied geometry is relevant to turbine structures between high pressure and low pressure turbines in aircraft engines. The maps of local heat transfer coefficient in the inter-rib regions were obtained by using the steady state liquid crystal thermography. The main purpose is to investigate the effect of blockage ratio (e/Dh) on the developing heat transfer behavior. In particular, the heat transfer characteristics between the first repeated ribs, i.e., in the inter-rib regions were studied, where the flow field is fully developed while the thermal field is not yet periodically fully developed.

Author(s):  
Yanchen Fu ◽  
Zhi Tao ◽  
Guoqiang Xu ◽  
Hongwu Deng ◽  
Zhouxia Jia

Supercritical hydrocarbon fuel experimental loop was constructed at Beihang University to study the heat transfer characteristics to supercritical hydrocarbon fuel. The test section, a stainless tube (1.86mm I.D., 2.26mm O.D., 1Cr18Ni9Ti) with the length of 300mm, was placed horizontally above the ground and the local heat transfer coefficients of the test section were systematically measured at fixed supercritical pressure of 5MPa. The mass flux varied from 786.5 to 1573 kg/ (m2 ·s), with the uniform heat flux from 180 to 450kW/m2 and the inlet fuel temperature ranged from 373 to 673K. The experimental investigation was confined to supercritical flows with heat addition only. Hence, heat losses were measured to be taken into consideration for every experimental condition. The experimental results were analyzed that heat transfer enhances at the reduced temperature Tb/Tpc rising from 0.95 to 1.04 and deteriorates when Tb/Tpc is larger than 1.04. The criterions of Shitman and Jackson were selected to judge the heat transfer characteristics in a horizontal micro-tube. The results indicated that buoyancy effects are ignored as the K<0.01 for the micro-scale tube and thermal acceleration is the main factor for the heat transfer characteristics. By direct comparison with an assortment of experimental data, a new correlation was proposed to be more accurate than others in predicting heat transfer phenomena for Chinese RP-3 hydrocarbon fuel in a horizontal micro-tube.


2003 ◽  
Vol 125 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Seong-Yeon Yoo ◽  
Jong-Hark Park ◽  
Min-Ho Chung

When heat is released by forced convection from electronic modules in a narrow printed circuit board channel, complex flow phenomena—such as stagnation and acceleration on the front surface, separation and reattachment on the top surface, wake or cavity flow near the rear surface—affect the heat transfer characteristics. The purpose of this study is to investigate how these flow conditions influence the local heat transfer from electronic modules. Experiments are performed on a three-dimensional array of hexahedral elements as well as on a two-dimensional array of rectangular elements. Naphthalene sublimation technique is employed to measure three-dimensional local mass transfer, and the mass transfer data are converted to their counterparts of the heat transfer process using the analogy equation between heat and mass transfer. Module location and streamwise module spacing are varied, and the effect of vortex generators on heat transfer enhancement is also examined. Dramatic change of local heat transfer coefficients is found on each surface of the module, and three-dimensional modules have a little higher heat transfer value than two-dimensional modules because of bypass flow. Longitudinal vortices formed by vortex generator enhance the mixing of fluids and thereby heat transfer, and the rectangular wing type vortex generator is found to be more effective than the delta wing type vortex generator.


Author(s):  
Xiaoyu Li ◽  
Zhenqun Wu ◽  
Huibo Wang ◽  
Hui Jin

Abstract In the supercritical water (SCW)-particle two-phase flow of fluidized bed, the particles that make up the particle cluster interact with each other through fluid, and it will affect the flow and heat transfer. However, due to the complex properties of SCW, the research on particle cluster is lacking, especially in terms of heat transfer. This research takes two particles as an example to study the heat transfer characteristics between SCW and another particle when one particle exists. This research uses the distance and angle between the two particles as the influencing factors to study the average heat transfer rate and local heat transfer rate. In this research, it is found that the effect is obvious when L/D = 1.1. When L = 1.1D, the temperature field and the flow field will partially overlap. The overlap of the temperature field will weaken the heat transfer between SCW and the particle. The overlap of the flow field has an enhanced effect on the heat transfer between SCW and the particle. The heat transfer between SCW and particles is simultaneously affected by these two effects, especially local heat transfer rate. In addition, this research also found that as the SCW temperature decreases, the thermal conductivity and specific heat of SCW increases, which enhances the heat transfer between SCW and the particles. This research is of great significance for studying the heat transfer characteristics of SCW-particle two-phase flow in fluidized bed.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
X. L. Wang ◽  
H. B. Yan ◽  
T. J. Lu ◽  
S. J. Song ◽  
T. Kim

This study reports on heat transfer characteristics on a curved surface subject to an inclined circular impinging jet whose impinging angle varies from a normal position θ = 0 deg to θ = 45 deg at a fixed jet Reynolds number of Rej = 20,000. Three curved surfaces having a diameter ratio (D/Dj) of 5.0, 10.0, and infinity (i.e., a flat plate) were selected, each positioned systematically inside and outside the potential core of jet flow where Dj is the circular jet diameter. Present results clarify similar and dissimilar local heat transfer characteristics on a target surface due to the convexity. The role of the potential core is identified to cause the transitional response of the stagnation heat transfer to the inclination of the circular jet. The inclination and convexity are demonstrated to thicken the boundary layer, reducing the local heat transfer (second peaks) as opposed to the enhanced local heat transfer on a flat plate resulting from the increased local Reynolds number.


2013 ◽  
Vol 448-453 ◽  
pp. 3291-3295
Author(s):  
Ge Ping Wu ◽  
Jun Wang ◽  
Ping Lu

Flow and heat transfer characteristics in the microchannel cooling passages with three different types of the MTPV systems are numerically investigated. Reynolds ranged from 100 to 1000 and hydraulic diameter from 0.4mm to 0.8mm. The steady, laminar flow and heat transfer equations are solved in a finite-volume method. The local heat transfer characteristics, thermal resistance, Nusselt numbers, friction factor and pressure losses of the different types are analyzed. A comparison of the heat transfer coefficient, pressure losses and friction factor of the different microchannels are also presented. The heat transfer performance of the rob bundles microchannel is found to be much better than others. However, the rectangular passage has the lowest thermal resistance than the other types of microchannels.


Author(s):  
Lei Wang ◽  
Bengt Sunde´n

Repeated ribs are frequently employed to promote turbulence and to enhance heat transfer in various ducts. In the present study, liquid crystal thermography has applied to the study of heat transfer from a square channel having one surface heated at uniform heat flux and roughened by repeated ribs. The continuous and truncated ribs, having square sections, with height-to-hydraulic diameter ratio of 0.15, were deployed normal to the mainstream direction of flow. Detailed distributions of the local heat transfer coefficient were obtained at various Reynolds number within the turbulent flow regime. Averaged data were calculated in order to evaluate the augmentation of heat transfer by the presence of different ribs.


Sign in / Sign up

Export Citation Format

Share Document