Casing Pressure Measurements and Numerical Simulations of a 1.5 Stage Axial Compressor: Tip Leakage Flow and Rotating Instability

Author(s):  
Hao Wang ◽  
Yadong Wu ◽  
Hua Ouyang ◽  
Jie Tian ◽  
Zhaohui Du

Experimental and numerical investigations on the unsteady casing flow field in a one-and-half stage low speed axial compressor have been carried out. By using fast response pressure transducers instrumented on the rotor casing, the pressure time series were acquired at different operation points from throttle wide open to near-stall operation point. The pseudo-spatial pressure contours, phase-locked averaged and root-mean-square pressure contours and power spectrums of unsteady pressure signal have been achieved. The CFD simulations were conducted to help understanding the features of tip leakage vortex. The rotating instability has been detected throughout an operation range from small flow rate point to near stall point. The frequency characteristic of rotating instability according flow rate was discussed. Based on the pattern of RIF varying with flow rate, the developing process of rotating instability according to flow rate could be divided into two stages, referred as early-developing stage and fully-developed stage. By analyzing the correlation between rotating instability and casing flow field, it was discovered that the origination and development of rotating instability was closely related to the fluctuation induced by tip leakage vortex.

Author(s):  
K. Yamada ◽  
M. Furukawa ◽  
T. Nakano ◽  
M. Inoue ◽  
K. Funazaki

Unsteady three-dimensional flow fields in a transonic axial compressor rotor (NASA Rotor 37) have been investigated by unsteady Reynolds-averaged Navier-Stokes simulations. The simulations show that the breakdown of the tip leakage vortex occurs in the compressor rotor because of the interaction of the vortex with the shock wave. At near-peak efficiency condition small bubble-type breakdown of the tip leakage vortex happens periodically and causes the loading of the adjacent blade to fluctuate periodically near the leading edge. Since the blade loading near the leading edge is closely linked to the swirl intensity of the tip leakage vortex, the periodic fluctuation of the blade loading leads to the periodic breakdown of the tip leakage vortex, resulting in self-sustained flow oscillation in the tip leakage flow field. However, the tip leakage vortex breakdown is so weak and small that it is not observed in the time-averaged flow field at near-peak efficiency condition. On the other hand, spiral-type breakdown of the tip leakage vortex is caused by the interaction between the vortex and the shock wave at near-stall operating condition. The vortex breakdown is found continuously since the swirl intensity of tip leakage vortex keeps strong at near-stall condition. The spiral-type vortex breakdown has the nature of self-sustained flow oscillation and gives rise to the large fluctuation of the tip leakage flow field, in terms of shock wave location, blockage near the rotor tip and three-dimensional separation structure on the suction surface. It is found that the breakdown of the tip leakage vortex leads to the unsteady flow phenomena near the rotor tip, accompanying large blockage effect in the transonic compressor rotor at the near-stall condition.


Author(s):  
Natalie R. Smith ◽  
William L. Murray ◽  
Nicole L. Key

The unsteady flow field generated by the rotor provides unsteady aerodynamic excitations to the downstream stator, which can result in vibrations such as forced response. In this paper, measurements of the rotor wake and rotor tip leakage flow from an embedded rotor in a multistage axial compressor are presented. A unique feature of this work is the pitchwise traverse of the flow field used to highlight the changes in the rotor exit flow field with respect to the position of the surrounding vane rows. Results acquired at mid-span focus on characterizing an average rotor wake, including the effects on the frequency spectrum, from a forced response perspective. While many analyses use an average rotor wake to characterize the aerodynamic forcing function to the downstream stator, this study explores the factors that influence changes in the rotor wake shape and the resulting impact on the spectrum. Additionally, this paper investigates the flow near the endwall where the tip leakage vortex is an important contributor to the aerodynamic excitations for the downstream vane. For the first time, experimental data are presented at the rotor exit, which show the modulation in size and radial penetration of the tip leakage vortex as the rotor passes through the upstream vane wake. As computational models become more advanced, the ability to incorporate these aerodynamic excitation effects should be considered to provide better predictions for vane vibratory response.


Author(s):  
Yoojun Hwang ◽  
Shin-Hyoung Kang ◽  
Sungryoung Lee

Numerical calculations were done to investigate unsteady flows through the tip clearance in an axial compressor. The first stage of a low speed research axial compressor with an inlet guide vane was examined after it had been confirmed that the numerically calculated performance data was in good agreement with the experimentally measured performance data. Special attention was paid to the flow during the operation of the compressor when the flow rate was low to study the flow behavior near stall. The estimated performance and the flow pattern of the compressor were found to be related to the unsteadiness of the tip leakage flow altered by the potential effect from the downstream stator row blades. It was shown that the unsteady flow calculations are necessary to predict the performance of an axial compressor, in particular, for low flow rates. On the other hand, rotating instability vortices developed due to unsteady tip leakage flow as the flow rate decreased. It was found that the flow structures corresponding to the rotating instability were merging as the flow rate decreased and the speed of the rotating instability varied with the operating conditions. Consequently, this leads to a non-synchronous vibration frequency.


Author(s):  
Shraman Goswami ◽  
Ashima Malhotra

Abstract Performance of an axial compressor rotor depends largely on the tip leakage flow. Tip leakage flow results in tip leakage vortex which is a source of loss. This has an impact on the compressor efficiency as well as stall margin. A lot of work has been done to understand the tip leakage flow and controlling the same. Active and passive stall margin improvement methods mainly target the tip leakage vortex. In the current study, numerical investigations are carried out to understand flow fields near tip region of rotors. The blade tip designed to have a tip gap as sine and cosine waves (single and double waves). Numerical methodology is validated with NASA Rotor37 test results. The performance parameters of the rotors with modified tip gap shapes are compared with constant tip clearance rotor. A detailed flow field investigation is presented to compare the tip flow structure and its impact on overall performance of the compressor.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Natalie R. Smith ◽  
William L. Murray ◽  
Nicole L. Key

The unsteady flow field generated by the rotor provides unsteady aerodynamic excitations to the downstream stator, which can result in vibrations such as forced response. In this paper, measurements of the rotor wake and rotor tip leakage flow from an embedded rotor in a multistage axial compressor are presented. A unique feature of this work is the pitchwise traverse of the flow field used to highlight the changes in the rotor exit flow field with respect to the position of the surrounding vane rows. Results acquired at midspan focus on characterizing an average rotor wake, including the effects on the frequency spectrum, from a forced response perspective. While many analyses use an average rotor wake to characterize the aerodynamic forcing function to the downstream stator, this study explores the factors that influence changes in the rotor wake shape and the resulting impact on the spectrum. Additionally, this paper investigates the flow near the endwall where the tip leakage vortex is an important contributor to the aerodynamic excitations for the downstream vane. For the first time, experimental data are presented at the rotor exit, which show the modulation in size and radial penetration of the tip leakage vortex as the rotor passes through the upstream vane wake. As computational models become more advanced, the ability to incorporate these aerodynamic excitation effects should be considered to provide better predictions for vane vibratory response.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


Author(s):  
Martina Ricci ◽  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Andrea Arnone

Abstract The tip leakage flow in turbine and compressor blade rows is responsible for a relevant fraction of the total loss. It contributes to unsteadiness, and have an important impact on the operability range of compressor stages. Experimental investigations and, more recently, scale-resolving CFD approaches have helped in clarifying the flow mechanism determining the dynamics of the tip leakage vortex. Due to their continuing fundamental role in design verifications, it is important to establish whether RANS/URANS approaches are able to reproduce the effects of such a flow feature, in order to correctly drive the design of the next generation of turbomachinery. Base studies are needed in order to accomplish this goal. In the present work the tip leakage flow in axial compressor rotor blade cascade have been studied. The cascade was tested experimentally in Virginia Tech Low Speed Cascade Wind Tunnel in both stationary and moving endwall configurations. Numerical analyses were performed using the TRAF code, a state-of-the-art in-house-developed 3D RANS/URANS flow solver. The impact of the numerical framework was investigated selecting different advection schemes including a central scheme with artificial dissipation and a high-resolution upwind strategy. In addition, two turbulence models have been used, the Wilcox linear k–ω model and a non-linear eddy viscosity model (Realizable Quadratic Eddy Viscosity Model), which accounts for turbulence anisotropy. The numerical results are scrutinized using the available measurements. A detailed discussion of the vortex evolution inside the blade passage and downstream of the blade trailing edge is presented in terms of streamwise velocity, streamwise vorticity, and turbulent kinetic energy contours. The purpose is to identify guidelines for obtaining the best representation of the vortex dynamics, with the methodologies usually employed in routine design iterations and, at the same time, evidence their weak aspects that need further modelling efforts.


2014 ◽  
Vol 30 (3) ◽  
pp. 307-313 ◽  
Author(s):  
R. Taghavi-Zenou ◽  
S. Abbasi ◽  
S. Eslami

ABSTRACTThis paper deals with tip leakage flow structure in subsonic axial compressor rotor blades row under different operating conditions. Analyses are based on flow simulation utilizing computational fluid dynamic technique. Three different circumstances at near stall condition are considered in this respect. Tip leakage flow frequency spectrum was studied through surveying instantaneous static pressure signals imposed on blades surfaces. Results at the highest flow rate, close to the stall condition, showed that the tip vortex flow fluctuates with a frequency close to the blade passing frequency. In addition, pressure signals remained unchanged with time. Moreover, equal pressure fluctuations at different passages guaranteed no peripheral disturbances. Tip leakage flow frequency decreased with reduction of the mass flow rate and its structure was changing with time. Spillage of the tip leakage flow from the blade leading edge occurred without any backflow in the trailing edge region. Consequently, various flow structures were observed within every passage between two adjacent blades. Further decrease in the mass flow rate provided conditions where the spilled flow ahead of the blade leading edge together with trailing edge backflow caused spike stall to occur. This latter phenomenon was accompanied by lower frequencies and higher amplitudes of the pressure signals. Further revolution of the rotor blade row caused the spike stall to eventuate to larger stall cells, which may be led to fully developed rotating stall.


Author(s):  
Zhibo Zhang ◽  
Xianjun Yu ◽  
Baojie Liu

The detailed evolutionary processes of the tip leakage flow/vortex inside the rotor passage are still not very clear for the difficulties of investigating of them by both experimental and numerical methods. In this paper, the flow fields near the rotor tip region inside the blade passage with two tip gaps, 0.5% and 1.5% blade height respectively, were measured by using stereoscopic particle image velocimetry (SPIV) in a large-scale low speed axial compressor test facility. The measurements are conducted at four different operating conditions, including the design, middle, maximum static pressure rise and near stall conditions. In order to analyze the variations of the characteristics of the tip leakage vortex (TLV), the trajectory, concentration, size, streamwise velocity, and the blockage parameters are extracted from the ensemble-averaged results and compared at different compressor operating conditions and tip gaps. The results show that the formation of the TLV is delayed with large tip clearance, however, its trajectory moves much faster in an approximately linear way from the blade suction side to pressure side. In the tested compressor, the size of the tip gap has little effects on the scale of the TLV in the spanwise direction, on the contrary, its effects on the pitch-wise direction is very prominent. Breakdown of the TLV were both found at the near-stall condition with different tip gaps. The location of the initiation of the TLV breakdown moves downstream from the 60% chord to 70% chord as the tip gap increases. After the TLV breakdown occurs, the flow blockage near the rotor tip region increases abruptly. The peak value of the blockage effects caused by the TLV breakdown is doubled with the tip gap size increasing from 0.5% to 1.5% blade span.


Author(s):  
K. Yamada ◽  
K. Funazaki ◽  
H. Sasaki

The purpose of this study is to have a better understanding of the unsteady behavior of tip clearance flow at near-stall condition from a multi-passage simulation and to clarify the relation between such unsteadiness and rotating disturbance. This study is motivated by the following concern. A single passage simulation has revealed the occurrence of the tip leakage vortex breakdown at near-stall condition in a transonic axial compressor rotor, leading to the unsteadiness of the tip clearance flow field in the rotor passage. These unsteady flow phenomena were similar to those in the rotating instability, which is classified in one of the rotating disturbances. In other words it is possible that the tip leakage vortex breakdown produces a rotating disturbance such as the rotating instability. Three-dimensional unsteady RANS calculation was conducted to simulate the rotating disturbance in a transonic axial compressor rotor (NASA Rotor 37). The four-passage simulation was performed so as to capture a short length scale disturbance like the rotating instability and the spike-type stall inception. The simulation demonstrated that the unsteadiness of tip leakage vortex, which was derived from the vortex breakdown at near-stall condition, invoked the rotating disturbance in the rotor, which is similar to the rotating instability.


Sign in / Sign up

Export Citation Format

Share Document