scholarly journals Experimental Investigation of a Leading Edge Cooling System With Optimized Inclined Racetrack Holes

Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Lorenzo Tarchi ◽  
Nils Ohlendorf

An experimental survey of a leading edge cooling scheme was performed to measure the Nusselt number distribution on a large scale test facility simulating the leading edge cavity of an high pressure turbine blade. Test section is composed by two adjacent cavities, a rectangular supply channel and the leading edge cavity. The cooling flow impinges on the concave leading edge internal walls, by means of an impingement array located between the two cavities, and it is extracted through showerhead and film cooling holes. The impingement geometry is composed by a double array of circular or shaped holes. The aim of the present study is to investigate the heat transfer performance of two optimized impingement schemes in comparison with a standard one with circular and orthogonal holes. Both the optimized arrays have inclined racetrack shaped holes and one of them has also a converging shape. Measurements were performed by means of a transient technique using narrow band Thermo-chromic Liquid Crystals (TLC). Jet Reynolds number was varied in order to cover the typical engine conditions of these cooling systems (Rej = 15000–45000). Results are reported in terms of detailed 2D maps, radial and tangential averaged Nusselt numbers.

Author(s):  
Bruno Facchini ◽  
Francesco Maiuolo ◽  
Lorenzo Tarchi ◽  
Nils Ohlendorf

An experimental survey of a leading edge cooling scheme was performed to measure the Nusselt number distribution on a large scale test facility simulating the leading edge cavity of a pressure turbine blade. Test section is composed by two adjacent cavities, a rectangular supply channel and the leading edge cavity. The cooling flow impinges on the concave leading edge internal walls, by means of an impingement array located between the two cavities, and it is extracted through shower-head and film cooling holes. The impingement geometry is composed of a double array of circular holes. The aim of the present study is to point out the effects on the heat transfer coefficient of the radial jet pitch (y/d = 3 to 5) and the tangential jet pitch (x/d = 3 to 5). Moreover the influence of the shower-head extraction on the heat transfer distribution is investigated. Measurements were performed by means of a transient technique using narrow band Thermo-chromic Liquid Crystals (TLC). Jet Reynolds number was varied in order to cover the typical engine conditions of these cooling systems (Rej = 15000–45000). Results are reported in terms of detailed 2D maps, radial and tangential averaged Nusselt numbers.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
N. Sundaram ◽  
K. A. Thole

The endwall of a first-stage vane experiences high heat transfer and low adiabatic effectiveness levels because of high turbine operating temperatures and formation of leading edge vortices. These vortices lift the coolant off the endwall and pull the hot mainstream gases toward it. The region of focus for this study is the vane-endwall junction region near the stagnation location where cooling is very difficult. Two different film-cooling hole modifications, namely, trenches and bumps, were evaluated to improve the cooling in the leading edge region. This study uses a large-scale turbine vane cascade with a single row of axial film-cooling holes at the leading edge of the vane endwall. Individual hole trenches and row trenches were placed along the complete row of film-cooling holes. Two-dimensional semi-elliptically shaped bumps were also evaluated by placing the bumps upstream and downstream of the film-cooling row. Tests were carried out for different trench depths and bump heights under varying blowing ratios. The results indicated that a row trench placed along the row of film-cooling holes showed a greater enhancement in adiabatic effectiveness levels when compared to individual hole trenches and bumps. All geometries considered produced an overall improvement to adiabatic effectiveness levels.


Author(s):  
N. Sundaram ◽  
K. A. Thole

The endwall of a first stage vane experiences high heat transfer and low adiabatic effectiveness levels because of high turbine operating temperatures and formation of leading edge vortices. These vortices lift the coolant off the endwall and pull the hot mainstream gases towards it. The region of focus for this study is the vane-endwall junction region near the stagnation location where cooling is very difficult. Two different film-cooling hole modifications, namely trenches and bumps, were evaluated to improve the cooling in the leading edge region. This study uses a large-scale turbine vane cascade with a single row of axial film-cooling holes at the leading edge of the vane endwall. Individual hole trenches and row trenches were placed along the complete row of film-cooling holes. Two-dimensional semi-elliptically shaped bumps were also evaluated by placing the bumps upstream and downstream of the film-cooling row. Tests were carried out for different trench depths and bump heights under varying blowing ratios. The results indicated that a row trench placed along the row of film-cooling holes showed a greater enhancement in adiabatic effectiveness levels when compared to individual hole trenches and bumps. All geometries considered produced an overall improvement to adiabatic effectiveness levels.


Author(s):  
Luca Andrei ◽  
Carlo Carcasci ◽  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Francesco Maiuolo ◽  
...  

An experimental survey on a state of the art leading edge cooling scheme was performed to evaluate heat transfer coefficients (HTC) on a large scale test facility simulating an high pressure turbine airfoil leading edge cavity. Test section includes a trapezoidal supply channel with three large racetrack impingement holes. On the internal surface of the leading edge, four big fins are placed in order to confine impingement jets. The coolant flow impacts the leading edge internal surface and it is extracted from the leading edge cavity through 24 showerhead holes and 24 film cooling holes. The aim of the present study is to investigate the combined effects of jet impingement and mass flow extraction on the internal heat transfer of the leading edge. A non uniform mass flow extraction was also imposed to reproduce the effects of pressure side and suction side external pressure. Measurements were performed by means of a transient technique using narrow band Thermo-chromic Liquid Crystals (TLC). Jet Reynolds number and crossflow conditions into the supply channel were varied in order to cover the typical engine conditions of these cooling systems (Rej = 10000–40000). Experiments were compared with a numerical analysis on the same test case in order to better understand flow interaction inside the cavity. Results are reported in terms of detailed 2D maps, radial-wise and span-wise averaged values of Nusselt number.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Luca Andrei ◽  
Carlo Carcasci ◽  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Francesco Maiuolo ◽  
...  

An experimental survey on a state of the art leading edge cooling scheme was performed to evaluate heat transfer coefficients (HTC) on a large scale test facility simulating a high pressure turbine airfoil leading edge cavity. The test section includes a trapezoidal supply channel with three large racetrack impingement holes. On the internal surface of the leading edge, four big fins are placed in order to confine impingement jets. The coolant flow impacts the leading edge internal surface, and it is extracted from the leading edge cavity through 24 showerhead holes and 24 film cooling holes. The aim of the present study is to investigate the combined effects of jet impingement and mass flow extraction on the internal heat transfer of the leading edge. A nonuniform mass flow extraction was also imposed to reproduce the effects of the pressure side and suction side external pressure. Measurements were performed by means of a transient technique using narrow band thermochromic liquid crystals (TLCs). Jet Reynolds number and crossflow conditions into the supply channel were varied in order to cover the typical engine conditions of these cooling systems (Rej=10,000-40,000). Experiments were compared with a numerical analysis on the same test case in order to better understand flow interaction inside the cavity. Results are reported in terms of detailed 2D maps, radial-wise, and span-wise averaged values of Nusselt number.


2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Holger Werschnik ◽  
Jonathan Hilgert ◽  
Manuel Wilhelm ◽  
Martin Bruschewski ◽  
Heinz-Peter Schiffer

At the large scale turbine rig (LSTR) at Technische Universität Darmstadt, Darmstadt, Germany, the aerothermal interaction of combustor exit flow conditions on the subsequent turbine stage is examined. The rig resembles a high pressure turbine and is scaled to low Mach numbers. A baseline configuration with an axial inflow and a swirling inflow representative for a lean combustor is modeled by swirl generators, whose clocking position toward the nozzle guide vane (NGV) leading edge can be varied. A staggered double-row of cylindrical film cooling holes on the endwall is examined. The effect of swirling inflow on heat transfer and film cooling effectiveness is studied, while the coolant mass flux rate is varied. Nusselt numbers are calculated using infrared thermography and the auxiliary wall method. Boundary layer, turbulence, and five-hole probe measurements as well as numerical simulations complement the examination. The results for swirling inflow show a decrease of film cooling effectiveness of up to 35% and an increase of Nusselt numbers of 10–20% in comparison to the baseline case for low coolant mass flux rates. For higher coolant injection, the heat transfer is on a similar level as the baseline. The differences vary depending on the clocking position. The turbulence intensity is increased to 30% for swirling inflow.


1990 ◽  
Vol 112 (3) ◽  
pp. 459-466 ◽  
Author(s):  
D. E. Metzger ◽  
R. S. Bunker

An experimental study has been designed and performed to measure very localized internal heat transfer characteristics in large-scale models of turbine blade impingement-cooled leading edge regions that allow extraction, or bleed-off, of a portion of the internal cooling flow to provide leading edge film cooling along the blade external surface. The internal impingement air is provided by a single line of equally spaced multiple jets, aimed at the leading edge apex and generally exiting, minus the bleed-off flow, in the opposite or chordwise direction. The film coolant flow extraction takes place through two lines of holes, one each on the blade suction side and the blade pressure side, both fairly close to the airfoil leading edge. Detailed two-dimensional local surface Nusselt number distributions have been obtained through the use of aerodynamically steady but thermally transient tests employing temperature-indicating coatings. The thin coatings are sprayed directly on the test surfaces, and are observed during a test transient with automated computer vision and data acquisition systems. A wide range of parameter combinations of interest in cooled airfoil practice is covered in the test matrix, including combinations of variations in jet Reynolds number, airfoil leading edge sharpness, jet pitch-to-diameter ratio, and jet nozzle-to-apex travel distance. Measured local Nusselt numbers at each chordwise location back from the stagnation line have been used to calculate both the spanwise-average Nusselt numbers and spanwise Nusselt number gradients as functions of chordwise position. The results without film coolant extraction, presented in the Part I companion paper, are used as a basis of comparison to determine the additional effects of the film cooling bleed. Results indicate that heat transfer is primarily dependent on jet Reynolds number with smaller influences from the flow extraction rate. The results also suggest that changes in the spanwise alignment of the impingement nozzles relative to the position of the film cooling holes can cause significant variations in leading edge metal temperatures.


Author(s):  
Hong Yin

In advanced gas turbine technology, lean premixed combustion is an effective strategy to reduce peak temperature and thus, NO[Formula: see text] emissions. The swirler is adopted to establish recirculation flow zone, enhancing mixing and stabilizing the flame. Therefore, the swirling flow is dominant in the combustor flow field and has impact on the vane. This paper mainly investigates the swirling flow effect on the turbine first stage vane cooling system by conducting a group of numerical simulations. Firstly, the numerical methods of turbulence modeling using RANS and LES are compared. The computational model of one single swirl flow field is considered. Both the RANS and LES results give reasonable recirculation zone shape. When comparing the velocity distribution, the RANS results generally match the experimental data but fail to at some local area. The LES modeling gives better results and more detailed unsteady flow field. In the second step, the RANS modeling is incorporated to investigate the vane film cooling performance under the swirling inflow boundary condition. According to the numerical results, the leading edge film cooling is largely altered by the swirling flow, especially for the swirl core-leading edge aligned case. Compared to the pressure side, the suction side film cooling is more sensitive to the swirling flow. Locally, the film cooling jet is lifted and turned by the strong swirling flow.


Author(s):  
S. Friedrichs ◽  
H. P. Hodson ◽  
W. N. Dawes

The endwall film-cooling cooling configuration investigated by Friedrichs et al. (1996, 1997) had in principle sufficient cooling flow for the endwall, but in practice, the redistribution of this coolant by secondary flows left large endwall areas uncooled. This paper describes the attempt to improve upon this datum cooling configuration by redistributing the available coolant to provide a better coolant coverage on the endwall surface, whilst keeping the associated aerodynamic losses small. The design of the new, improved cooling configuration was based on the understanding of endwall film-cooling described by Friedrichs et al. (1996, 1997). Computational fluid dynamics were used to predict the basic flow and pressure field without coolant ejection. Using this as a basis, the above described understanding was used to place cooling holes so that they would provide the necessary cooling coverage at minimal aerodynamic penalty. The simple analytical modelling developed in Friedrichs et al. (1997) was then used to check that the coolant consumption and the increase in aerodynamic loss lay within the limits of the design goal. The improved cooling configuration was tested experimentally in a large scale, low speed linear cascade. An analysis of the results shows that the redesign of the cooling configuration has been successful in achieving an improved coolant coverage with lower aerodynamic losses, whilst using the same amount of coolant as in the datum cooling configuration. The improved cooling configuration has reconfirmed conclusions from Friedrichs et al. (1996, 1997); firstly, coolant ejection downstream of the three-dimensional separation lines on the endwall does not change the secondary flow structures; secondly, placement of holes in regions of high static pressure helps reduce the aerodynamic penalties of platform coolant ejection; finally, taking account of secondary flow can improve the design of endwall film-cooling configurations.


Author(s):  
Jason Town ◽  
Doug Straub ◽  
James Black ◽  
Karen Thole ◽  
Tom Shih

Effective internal and external cooling of airfoils is key to maintaining component life for efficient gas turbines. Cooling designs have spanned the range from simple internal convective channels to more advanced double-walls with shaped film-cooling holes. This paper describes the development of an internal and external cooling concept for a state-of-the-art cooled turbine blade. These cooling concepts are based on a review of literature and patents, as well as, interactions with academic and industry turbine cooling experts. The cooling configuration selected and described in this paper is referred to as the “baseline” design, since this design will simultaneously be tested with other more advanced blade cooling designs in a rotating turbine test facility using a “rainbow turbine wheel” configuration. For the baseline design, the leading edge is cooled by internal jet impingement and showerhead film cooling. The mid-chord region of the blade contains a three-pass serpentine passage with internal discrete V-shaped trip strips to enhance the internal heat transfer coefficient. The film cooling along the mid-chord of the blade uses multiple rows of shaped diffusion holes. The trailing edge is internally cooled using jet impingement and externally film cooled through partitioned cuts on the pressure side of the blade.


Sign in / Sign up

Export Citation Format

Share Document