Overall Effectiveness and Flowfield Measurements for an Endwall With Non-Axisymmetric Contouring

Author(s):  
Amy Mensch ◽  
Karen A. Thole

Endwall contouring is a technique used to reduce the strength and development of three-dimensional secondary flows in a turbine vane or blade passage in a gas turbine. The secondary flows locally affect the external heat transfer, particularly on the endwall surface. The combination of external and internal convective heat transfer along with solid conduction determines component temperatures, which affect the service life of turbine components. A conjugate heat transfer model is used to measure the non-dimensional external surface temperature, known as overall effectiveness, of an endwall with non-axisymmetric contouring. The endwall cooling methods include internal impingement cooling and external film cooling. Measured values of overall effectiveness show that endwall contouring reduces the impingement effectiveness alone, but increases the effectiveness of film cooling alone. Given the combined case of both impingement and film cooling, the laterally averaged overall effectiveness is not significantly changed between the flat and contoured endwall. Flowfield measurements indicate that the size and location of the passage vortex changes as film cooling is added and as the blowing ratio increases. Because endwall contouring can produce local effects on internal cooling and film cooling performance, the implications for heat transfer should be considered in endwall contour designs.

2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Amy Mensch ◽  
Karen A. Thole

Endwall contouring is a technique used to reduce the strength and development of three-dimensional secondary flows in a turbine vane or blade passage in a gas turbine. The secondary flows locally affect the external heat transfer, particularly on the endwall surface. The combination of external and internal convective heat transfer, along with solid conduction, determines component temperatures, which affect the service life of turbine components. A conjugate heat transfer model is used to measure the nondimensional external surface temperature, known as overall effectiveness, of an endwall with nonaxisymmetric contouring. The endwall cooling methods include internal impingement cooling and external film cooling. Measured values of overall effectiveness show that endwall contouring reduces the effectiveness of impingement alone, but increases the effectiveness of film cooling alone. Given the combined case of both impingement and film cooling, the laterally averaged overall effectiveness is not significantly changed between the flat and the contoured endwalls. Flowfield measurements indicate that the size and location of the passage vortex changes as film cooling is added and as the blowing ratio increases. Because endwall contouring can produce local effects on internal cooling and film cooling performance, the implications for heat transfer should be considered in endwall contour designs.


Author(s):  
Amy Mensch ◽  
Karen A. Thole

Ever-increasing thermal loads on gas turbine components require improved cooling schemes to extend component life. Engine designers often rely on multiple thermal protection techniques, including internal cooling and external film cooling. A conjugate heat transfer model for the endwall of a seven-blade cascade was developed to examine the impact of both convective cooling and solid conduction through the endwall. Appropriate parameters were scaled to ensure engine-relevant temperatures were reported. External film cooling and internal jet impingement cooling were tested separately and together for their combined effects. Experiments with only film cooling showed high effectiveness around film-cooling holes due to convective cooling within the holes. Internal impingement cooling provided more uniform effectiveness than film cooling, and impingement effectiveness improved markedly with increasing blowing ratio. Combining internal impingement and external film cooling produced overall effectiveness values as high as 0.4. A simplified, one-dimensional heat transfer analysis was used to develop a prediction of the combined overall effectiveness using results from impingement only and film cooling only cases. The analysis resulted in relatively good predictions, which served to reinforce the consistency of the experimental data.


Author(s):  
Carol E. Bryant ◽  
Connor J. Wiese ◽  
James L. Rutledge ◽  
Marc D. Polanka

Gas turbine hot gas path components are protected through a combination of internal cooling and external film cooling. The coolant typically travels through internal passageways, which may involve impingement on the internal surface of a turbine component, before being ejected as film cooling. Internal cooling effects have been studied in facilities that allow measurement of heat transfer coefficients within models of the internal cooling paths, with large heat transfer coefficients generally desirable. External film cooling is typically evaluated through measurements of the adiabatic effectiveness and its effect on the external heat transfer coefficient. Efforts aimed at improving cooling are often focused on either only the internal cooling or the film cooling; however, the common coolant flow means the internal and external cooling schemes are linked and the coolant holes themselves provide another convective path for heat transfer to the coolant. Recently, measurements of overall cooling effectiveness using matched Biot number turbine component models allow evaluation of the nondimensional wall temperature achieved for the fully cooled component. However, the relative contributions of internal cooling, external cooling, and convection within the film cooling holes is not well understood. Large scale, matched Biot number experiments, complemented by CFD simulations, were performed on a fully film cooled cylindrical leading edge model to evaluate the effects of various alterations in the cooling design on the overall effectiveness. The relative influence of film cooling and cooling within the holes was evaluated by selectively disabling individual holes and quantifying how the overall effectiveness changed. Several internal impingement cooling schemes in addition to a baseline case without impingement cooling were also tested. In general, impingement cooling is shown to have a negligible influence on the overall effectiveness in the showerhead region. This indicates that the cost and pressure drop penalties for implementing impingement cooling may not be compensated by an increase in thermal performance. Instead, the internal cooling provided by convection within the holes themselves was shown, along with external film cooling, to be a dominant contribution to the overall cooling effectiveness. Indeed, the numerous holes within the showerhead region impede the ability of internal surface cooling schemes to influence the outside surface temperature. The results of this research may allow improved focus of future efforts on the forms of cooling with the greatest potential to improve cooling performance.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Stephen P. Lynch ◽  
Karen A. Thole ◽  
Atul Kohli ◽  
Christopher Lehane

Three-dimensional contouring of the compressor and turbine endwalls in a gas turbine engine has been shown to be an effective method of reducing aerodynamic losses by mitigating the strength of the complex vortical structures generated at the endwall. Reductions in endwall heat transfer in the turbine have been also previously measured and reported in literature. In this study, computational fluid dynamics simulations of a turbine blade with and without nonaxisymmetric endwall contouring were compared to experimental measurements of the exit flowfield, endwall heat transfer, and endwall film-cooling. Secondary kinetic energy at the cascade exit was closely predicted with a simulation using the SST k-ω turbulence model. Endwall heat transfer was overpredicted in the passage for both the SST k-ω and realizable k-ε turbulence models, but heat transfer augmentation for a nonaxisymmetric contour relative to a flat endwall showed fair agreement to the experiment. Measured and predicted film-cooling results indicated that the nonaxisymmetric contouring limits the spread of film-cooling flow over the endwall depending on the interaction of the film with the contour geometry.


2014 ◽  
Vol 554 ◽  
pp. 225-229 ◽  
Author(s):  
Nor Azwadi Che Sidik ◽  
Kianpour Ehsan

This study was accomplished in order to investigate the effects of cylindrical and row trenched cooling holes with alignment angle of 0 degree and 90 degree at blowing ratio, BR = 3.18 on the film cooling performance adjacent to the endwall surface of a combustor simulator. In this research a three dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package FLUENT 6.2. The current study has been performed with Reynolds-averaged Navier-Stokes turbulence model (RANS) on internal cooling passages. This combustor simulator combined the interaction of two rows of dilution jets, which were staggered in the stream wise direction and aligned in the span wise direction, with that of film cooling along the combustor liner walls. The findings of the study declared that with using the row trenched holes near the endwall surface, film cooling effectiveness is doubled compared to the cooling performance of baseline case.


Author(s):  
Jin Wang ◽  
Bengt Sundén ◽  
Min Zeng ◽  
Qiu-Wang Wang

Three-dimensional simulations of the squealer tip on the GE-E3 blade with eight film cooling holes were carried out. To form the wake by the trailing edges of the stator vanes, cylindrical rods and delta wings were placed upstream of the blades. The rods were placed according to three positions, and the influence on the film cooling effectiveness was calculated. Because delta wings were placed upstream of the blades to generate in the vane passage, the passage flow also was investigated. However, the passage vortex generated by the delta wings had a profound effect on the passage flow distribution. For the squealer tip, the cavity contributes to the improvement of the cooling effect in the tip zone. The passage flow and the tip leakage flow influenced by cylindrical rods and delta wings were analyzed using numerical simulations with the blowing ratio of M = 0.5. In addition, calculations with and without cylindrical rods and delta wings were performed and then comparisons were enabled. It was found that the vortex created by delta wings made the passage flow more turbulent and the result indicates a slight effect on the film cooling effectiveness in the tip gap.


Author(s):  
Stephen P. Lynch ◽  
Karen A. Thole ◽  
Atul Kohli ◽  
Christopher Lehane

Three-dimensional contouring of the compressor and turbine endwalls in a gas turbine engine has been shown to be an effective method of reducing aerodynamic losses by mitigating the strength of the complex vortical structures generated at the endwall. Reductions in endwall heat transfer in the turbine have been also previously measured and reported in the literature. In this study, computational fluid dynamics simulations of a turbine blade with and without non-axisymmetric endwall contouring were compared to experimental measurements of the exit flowfield, endwall heat transfer and endwall film-cooling. Secondary kinetic energy at the cascade exit was closely predicted with a simulation using the SST k-ω turbulence model. Endwall heat transfer was overpredicted in the passage for both the SST k-ω and realizable k-ε turbulence models, but heat transfer augmentation for a non-axisymmetric contour relative to a flat endwall showed fair agreement to the experiment. Measured and predicted film-cooling results indicated that the non-axisymmetric contouring limits the spread of film-cooling flow over the endwall depending upon the interaction of the film with the contour geometry.


Author(s):  
Weilun Zhou ◽  
Qinghua Deng ◽  
Zhenping Feng

The laminated cooling or multi-layered impingement-effusion cooling, which originates from combustor liner cooling, combines impingement jet, rib-roughed and film cooling and results in a high overall cooling effectiveness. It’s believed to be a promising gas turbine blade cooling technique. In this paper, conjugate heat transfer analysis that has been validated by the experimental results was carried out for five laminated cooling models with different surface curvatures at a certain range of blowing ratio. The numerical results show that the curvature and blowing ratio have crucial effects on laminated cooling effectiveness. High blowing ratio results in a better overall cooling effectiveness for flat plate and concave surface, while the moderate blowing ratio performances better on convex surface. Film cooling has an interaction with the internal convective and impingement cooling, thus the optimal cooling effectiveness of laminated cooling is achieved at the condition that the improvement of internal cooling counteracts the deterioration of film cooling, instead of the condition that film cooling or internal cooling reaches the maximum respectively. Moreover, concave surfaces have the higher pressure loss in the whole range of blowing ratio, while convex surfaces have lower pressure loss than flat plate due to the turbulence intensity of external flow.


Author(s):  
William R. Stewart ◽  
David A. Kistenmacher ◽  
David G. Bogard

Previous tests simulating the effects of TBC (thermal barrier coating) on an internally and film cooled model turbine vane showed that the insulating effects of TBC dominate over variations in film cooling geometry and blowing ratio. In this study overall and external effectiveness were measured using a matched Biot number model vane simulating a TBC of thickness 0.6d, where d is the film cooing hole diameter. This was a 35% reduction in thermal resistance from previous tests. Overall effectiveness measurements were taken for an internal cooling only configuration, as well as for three rows of showerhead holes with a single row of holes on the pressure side of the vane. This pressure side row of holes was tested both as round holes and as round holes embedded in a realistic trench with a depth of 0.6 hole diameters. Even in the case of this thinner TBC, the insulating effects dominate over film cooling. In addition, using measurements of the convective heat transfer coefficient above the vane surface, and the thermal conductivities of the vane wall and simulated TBC material, the overall effectiveness of the thin TBC thickness can be predicted from the thick TBC data, for an internal cooling only configuration.


2014 ◽  
Vol 695 ◽  
pp. 376-379 ◽  
Author(s):  
Kianpour Ehsan ◽  
Nor Azwadi Che Sidik

The current study was conducted to analyze the effects of cylindrical and row trenched cooling holes with alignment angle of 90 degrees at blowing ratio, BR = 1.25 on the film cooling effectiveness near the end wall surface of a combustor simulator. In the current research a three dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package FLUENT 6.2.26. This study has been performed with Reynolds-averaged Navier-Stokes turbulence model (RANS) on internal cooling passages. This combustor simulator combined the interaction of two rows of dilution jets, which were staggered in the stream wise direction and aligned in the span wise arrangement, with that of film cooling along the combustor liner walls. The findings of the study declared that with using the row trenched holes near the end wall surface, film cooling effectiveness is increased three times compared to the cooling performance of baseline case.


Sign in / Sign up

Export Citation Format

Share Document