An Experimental and Numerical Study on the Aerothermal Characteristics of a Ribbed Transonic Squealer-Tip Turbine Blade With Purge Flow

Author(s):  
A. Arisi ◽  
J. Phillips ◽  
W. F. Ng ◽  
S. Xue ◽  
H. K. Moon ◽  
...  

Detailed heat transfer coefficient (HTC) and film cooling effectiveness (Eta) distribution on a squealer tipped first stage rotor blade were measured using an infrared (IR) technique. The blade tip design, obtained from a Solar Turbines Inc. gas turbine, consisted of double purge hole exits and four ribs within the squealer cavity, with a bleeder exit port on the pressure side close to the trailing edge. The tests were carried out in a transient linear transonic wind tunnel facility under land-based engine representative Mach/Reynolds number. Measurements were taken at an inlet turbulent intensity of Tu = 12%, with exit Mach numbers of 0.85 (Reexit=9.75×105) and 1.0 (Reexit = 1.15×106) with the Reynolds number based on the blade axial chord and the cascade exit velocity. The tip clearance was fixed at 1% (based on engine blade span) with a purge flow blowing ratio BR = 1.0. At each test condition, an accompanying numerical study was performed using Reynolds Averaged Navier Stokes (RANS) equations solver ANSYS Fluent to further understand the tip flow characteristics. The results showed that the tip purge flow has a blocking effect on the leakage flow path. Furthermore, the ribs significantly altered the flow (and consequently heat transfer) characteristics within the squealer tip cavity resulting in a significant reduction in film cooling effectiveness. This was attributed to increased coolant-leakage flow mixing due to increased recirculation within the squealer cavity. Overall, the peak heat transfer coefficient on the cavity floor increased with exit Mach/Reynolds number.

2016 ◽  
Vol 138 (10) ◽  
Author(s):  
A. Arisi ◽  
J. Phillips ◽  
W. F. Ng ◽  
S. Xue ◽  
H. K. Moon ◽  
...  

Detailed heat transfer coefficient (HTC) and film cooling effectiveness (Eta) distribution on a squealer-tipped first stage rotor blade were measured using an infrared technique. The blade tip design, obtained from the Solar Turbines, Inc., gas turbine, consists of double purge hole exits and four ribs within the squealer cavity, with a bleeder exit port on the pressure side close to the trailing edge. The tests were carried out in a transient linear transonic wind tunnel facility under land-based engine representative Mach/Reynolds number. Measurements were taken at an inlet turbulent intensity of Tu = 12%, with exit Mach numbers of 0.85 (Reexit = 9.75 × 105) and 1.0 (Reexit = 1.15 × 106) with the Reynolds number based on the blade axial chord and the cascade exit velocity. The tip clearance was fixed at 1% (based on engine blade span) with a purge flow blowing ratio, BR = 1.0. At each test condition, an accompanying numerical study was performed using Reynolds-averaged Navier–Stokes (RANS) equations solver ansys fluent to further understand the tip flow characteristics. The results showed that the tip purge flow has a blocking effect on the leakage flow path. Furthermore, the ribs significantly altered the flow (and consequently heat transfer) characteristics within the squealer-tip cavity resulting in a significant reduction in film cooling effectiveness. This was attributed to increased coolant–leakage flow mixing due to increased recirculation within the squealer cavity. Overall, the peak HTC on the cavity floor increased with exit Mach/Reynolds number.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


Author(s):  
Renzo La Rosa ◽  
Jaideep Pandit ◽  
Wing Ng ◽  
Brett Barker

Abstract Heat transfer experiments were done on a flat plate to study the effect of internal counter-flow backside cooling on adiabatic film cooling effectiveness and heat transfer coefficient. In addition, the effects of density ratio (DR), blowing ratio (BR), diagonal length over diameter (L/D) ratio, and Reynolds number were studied using this new configuration. The results are compared to a conventional plenum fed case. Data were collected up to X/D = 23 where X = 0 at the holes, an S/D = 1.65 and L/D = 1 and 2. Testing was done at low L/D ratios since short holes are normally found in double wall cooling applications in turbine components. A DR of 2 was used in order to simulate engine-like conditions and this was compared to a DR of 0.92 since relevant research is done at similar low DR. The BR range of 0.5 to 1.5 was chosen to simulate turbine conditions as well. In addition, previous research shows that peak effectiveness is found within this range. Infrared (IR) thermography was used to capture temperature contours on the surface of interest and the images were calibrated using a thermocouple and data analyzed through MATLAB software. A heated secondary fluid was used as ‘coolant’ in the present study. A steady state heat transfer model was used to perform the data reduction procedure. Results show that backside cooling configuration has a higher adiabatic film cooling effectiveness when compared to plenum fed configurations at the same conditions. In addition, the trend for effectiveness with varying BR is reversed when compared with traditional plenum fed cases. Yarn flow visualization tests show that flow exiting the holes in the backside cooling configuration is significantly different when compared to flow exiting the plenum fed holes. We hypothesize that backside cooling configuration has flow exiting the holes in various directions, including laterally, and behaving similar to slot film cooling, explaining the differences in trends. Increasing DR at constant BR shows an increase in adiabatic effectiveness and HTC in both backside cooling and plenum fed configurations due to the decreased momentum of the coolant, making film attachment to the surface more probable. The effects of L/D ratio in this study were negligible since both ratios used were small. This shows that the coolant flow is still underdeveloped at both L/D ratios. The study also showed that increasing turbulence through increasing Reynolds number decreased adiabatic effectiveness.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Andrew J. Saul ◽  
Peter T. Ireland ◽  
John D. Coull ◽  
Tsun Holt Wong ◽  
Haidong Li ◽  
...  

The effect of film cooling on a transonic squealer tip has been examined in a high speed linear cascade, which operates at engine-realistic Mach and Reynolds numbers. Tests have been performed on two uncooled tip geometries with differing pressure side rim edge radii, and a cooled tip matching one of the uncooled cases. The pressure sensitive paint technique has been used to measure adiabatic film cooling effectiveness on the blade tip at a range of tip gaps and coolant mass flow rates. Complementary tip heat transfer coefficients have been measured using transient infrared thermography, and the effects of the coolant film on the tip heat transfer and engine heat flux were examined. The uncooled data show that the tip heat transfer coefficient distribution is governed by the nature of flow reattachments and impingements. The squealer tip can be broken down into three regions, each exhibiting a distinct response to a change in the tip gap, depending on the local behavior of the overtip leakage flow. Complementary computational fluid dynamics (CFD) shows that the addition of casing motion causes no change in the flow over the pressure side rim. Injected coolant interacts with the overtip leakage flow, which can locally enhance the tip heat transfer coefficient. The film effectiveness is dependent on both the coolant mass flow rate and tip clearance. At increased coolant mass flow, areas of high film effectiveness on the pressure side rim coincide strongly with a net heat flux reduction and in the subsonic tip region with low heat transfer coefficient.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu ◽  
...  

To get wider laterally coverage of the cooling jet, the single-wave trench and double-wave trench were further studied on the vane. The film cooling characteristics of different film cooling structures were numerically studied using Reynolds Averaged Navier Stokes (RANS) equations. The SST turbulence model with γ-θ transition model was applied for the present simulation. The film cooling effectiveness and heat transfer coefficient of different film cooling structures were investigated, and the distribution of temperature field and flow field were analyzed. Four different blowing ratios (M) from 0.5 to 2.0 were studied. The results show that compared with the transverse trench structure, the span-wise averaged film cooling effectiveness of the double-wave trench increases 0.1–0.35. The single-wave trench and double-wave trench film cooling structures significantly improve the uniformity of the jet and increase the film cooling effectiveness. The span-wise averaged film cooling effectiveness of the double-wave trench is higher than that of the single-wave trench at high blowing ratio conditions. The anti-counter-rotating vortices which can press the cooling jet on near-wall are formed at the downstream single-wave trench and double-wave trench. Both of the double-wave trench and the single-wave trench structure can effectively improve the film cooling effectiveness of the vane in the case of a little increase in the heat transfer coefficient compared to the cylindrical hole. The guidance action of the double-wave trench is more reasonable, therefore the film cooling characteristics is better than that of the single-wave trench.


Author(s):  
Andrew J. Saul ◽  
Peter T. Ireland ◽  
John D. Coull ◽  
Tsun Holt Wong ◽  
Haidong Li ◽  
...  

The effect of film cooling on a high pressure turbine blade with an open squealer tip has been examined in a high speed linear cascade. The cascade operates at engine realistic Mach and Reynolds numbers, producing transonic flow conditions over the blade tip. Tests have been performed on two uncooled tip geometries with differing pressure side rim edge radii, and a cooled tip matching one of the uncooled cases. The pressure sensitive paint technique has been used to measure adiabatic film cooling effectiveness on the blade tip at a range of tip gaps and coolant mass flow rates. Complementary tip heat transfer coefficients (HTC) have been measured using transient infrared thermography, and the effects of the coolant film on the tip heat transfer and engine heat flux examined. The uncooled data show that the tip heat transfer coefficient distribution is governed by the nature of flow reattachments and impingements. The squealer tip can be broken down into three regions, each exhibiting a distinct response to a change in the tip gap, depending on the local behaviour of the overtip leakage flow. The edge radius of the pressure side rim causes the overtip leakage flow to change dramatically at low clearance. Complementary CFD shows that the addition of casing motion causes no further change on the pressure side rim. Injected coolant interacts with the overtip leakage flow, which can locally enhance the tip heat transfer coefficient compared to the uncooled tip. The film effectiveness is dependent on both the coolant mass flow rate and tip clearance. At increased coolant mass flow, areas of high film effectiveness on the pressure side rim coincide strongly with a net heat flux reduction and in the subsonic tip region with low heat transfer coefficient.


Author(s):  
Song Xue ◽  
Arnab Roy ◽  
Wing F. Ng ◽  
Srinath V. Ekkad

The study presented in this article provides detailed description about a newly developed experimental technique to determine three key convective heat transfer parameters simultaneously in hot gas path of a modern high pressure turbine–recovery temperature (Tr), heat transfer coefficient (HTC), and adiabatic film cooling effectiveness (Eta). The proposed technique, dual linear regression technique (DLRT), has been developed based on the 1D semi-infinite transient conduction theory, is applicable toward film cooled heat transfer experiments especially under realistic engine environment conditions (high Reynolds number along with high Mach numbers). It addresses the fundamental three temperature problem by a two-test strategy. The current popular technique, curve fitting method (CFM) (Ekkad and Han, 2000, “A Transient Liquid Crystal Thermography Technique for Turbine Heat Transfer Measurements,” Meas. Sci. Technol., 11(7), pp. 957–968), which is widely used in the low speed wind tunnel experiments, is not competent in the transonic transient wind tunnel. The CFM (including schemes for both film cooled and nonfilm cooled experiments) does not provide recovery temperature on the film cooled surface. Instead, it assumes the recovery temperature equal to the mainstream total temperature. Its basic physics model simplifies the initial unsteady flow development within the data reduction period by assuming a step jump in mainstream pressure and temperature, which results in significant under prediction of HTC due to the gradual ramping of the flow Mach/Reynolds number and varying temperature in a transient, cascade wind tunnel facility. The proposed technique is advantageous due to the elimination of these added assumptions and including the effects of compressible flow physics at high speed flow. The detailed discussion on theory and development of the DLRT is followed by validation with analytical calculation and comparisons with the traditional technique by reducing the same set of experimental data. Results indicate that the proposed technique stands out with a higher accuracy and reliability.


2004 ◽  
Vol 10 (5) ◽  
pp. 345-354 ◽  
Author(s):  
Jan Dittmar ◽  
Achmed Schulz ◽  
Sigmar Wittig

The demand of improved thermal efficiency and high power output of modern gas turbine engines leads to extremely high turbine inlet temperature and pressure ratios. Sophisticated cooling schemes including film cooling are widely used to protect the vanes and blades of the first stages from failure and to achieve high component lifetimes. In film cooling applications, injection from discrete holes is commonly used to generate a coolant film on the blade's surface.In the present experimental study, the film cooling performance in terms of the adiabatic film cooling effectiveness and the heat transfer coefficient of two different injection configurations are investigated. Measurements have been made using a single row of fanshaped holes and a double row of cylindrical holes in staggered arrangement. A scaled test model was designed in order to simulate a realistic distribution of Reynolds number and acceleration parameter along the pressure side surface of an actual turbine guide vane. An infrared thermography measurement system is used to determine highly resolved distribution of the models surface temperature. Anin-situcalibration procedure is applied using single embedded thermocouples inside the measuring plate in order to acquire accurate local temperature data.All holes are inclined 35° with respect to the model's surface and are oriented in a streamwise direction with no compound angle applied. During the measurements, the influence of blowing ratio and mainstream turbulence level on the adiabatic film cooling effectiveness and heat transfer coefficient is investigated for both of the injection configurations.


Author(s):  
Lin Ye ◽  
Cun-liang Liu ◽  
Hai-yong Liu ◽  
Hui-ren Zhu ◽  
Jian-xia Luo

To investigate the effects of the inclined ribs on internal flow structure in film hole and the film cooling performance on outer surface, experimental and numerical studies are conducted on the effects of rib orientation angle on film cooling of compound cylindrical holes. Three coolant channel cases, including two ribbed cross-flow channels (135° and 45° angled ribs) and the plenum case, are studied under three blowing ratios (0.5, 1.0 and 2.0). 2D contours of film cooling effectiveness as well as heat transfer coefficient were measured by transient liquid crystal measurement technique (TLC). The steady RANS simulations with realizable k-ε turbulence model and enhanced wall treatment were performed. The results show that the spanwise width of film coverage is greatly influenced by the rib orientation angle. The spanwise width of the 45° rib case is obviously larger than that of the 135° rib case under lower blowing ratios. When the blowing ratio is 1.0, the area-averaged cooling effectiveness of the 135° rib case and the 45° rib case are higher than that of the plenum case by 38% and 107%, respectively. With the increase of blowing ratio, the film coverage difference between different rib orientation cases becomes smaller. The 45° rib case also produces higher heat transfer coefficient, which is higher than the 135° rib case by 3.4–8.7% within the studied blowing ratio range. Furthermore, the discharge coefficient of the 45° rib case is the lowest among the three cases. The helical motion of coolant flow is observed in the hole of 45° rib case. The jet divides into two parts after being blown out of the hole due to this motion, which induces strong velocity separation and loss. For the 135° rib case, the vortex in the upper half region of the secondary-flow channel rotates in the same direction with the hole inclination direction, which leads to the straight streamlines and thus results in lower loss and higher discharge coefficient.


Author(s):  
Rebekah A. Russin ◽  
Daniel Alfred ◽  
Lesley M. Wright

This paper presents the development of a novel experimental technique utilizing both temperature and pressure sensitive paints (TSP and PSP). Through the combination of these paints, both detailed heat transfer coefficient and film cooling effectiveness distributions can be obtained from two short experiments. Using a mass transfer analogy, PSP has proven to be a powerful technique for measurement of film cooling effectiveness. This benefit is exploited to obtain detailed film cooling effectiveness distributions from a steady state flow experiment. This measured film cooling effectiveness is combined with transient temperature distributions obtained from a transient TSP experiment to produce detailed heat transfer coefficient distributions. Optical filters are used to differentiate the light emission from the florescent molecules comprising the PSP and TSP. Although two separate tests are needed to obtain the heat transfer coefficient distributions, the two tests can be performed in succession to minimize setup time and variability. The detailed film effectiveness and heat transfer enhancement ratios have been obtained for a generic, inclined angle (θ = 35°) hole geometry on a flat plate. Distinctive flow features over a wide range of blowing ratios have been captured with the proposed technique. In addition, the measured results have compared favorably to previous studies (both qualitatively and quantitatively), thus substantiating the use of the combined PSP / TSP technique for experimental investigations of three temperature mixing problems.


Sign in / Sign up

Export Citation Format

Share Document