Alternate Wind Turbine Blade Planform Design Studies for Low Wind Speeds

Author(s):  
Rajesh Kumar V. Gadamsetty ◽  
Jaikumar Loganathan ◽  
Vasanth Kumar Balaramudu ◽  
Ajay Rao

Wind turbine design for low wind regimes is gaining importance as existing high wind sites are heavily utilized. Maximizing energy yield from a low wind regime while adhering to load constraints is the biggest challenge. Longer rotors and higher towers are currently being used to maximize energy capture and improve AEP. The focus of this work is to assess new blade planforms for low wind speed blade design. Planforms with maple shape are studied and a new design methodology based on lift force distribution is adopted. CFD analysis is carried out for the blade planforms to validate the design methodology and the results show similar performance trends as that of the conventional design method.

Author(s):  
Ali A. Ameri ◽  
Majid Rashidi

In this paper, the authors analyze a design for a wind tower intended for areas of low wind speeds. The wind tower consists of a combination of several rooftop size turbines arranged alongside a cylindrical structure that acts as a Wind Deflecting Structure (WDS). The WDS amplifies the effective wind speed thus allowing the turbine rotors to operate under lower ambient wind speeds. Analyses were performed using simple models as well as more sophisticated CFD methods employing Steady and Unsteady Reynolds Averaged Navier-Stokes methodology. The effect of the wind amplification was shown on a commercial small wind turbine power output map. Also, a wind turbine rotor flow was computed as operating alongside the WDS and compared to the computed operation of isolated turbines at equal effective and ambient wind velocities. The computational analyses of this work suggest that the power output of isolated rooftop wind turbines deployed at low to moderate wind speed may be matched by installing wind turbines alongside a cylindrical wind deflecting structure operating at lower wind speeds. Other benefits of the arrangement are also enumerated.


2020 ◽  
Vol 37 ◽  
pp. 63-71
Author(s):  
Yui-Chuin Shiah ◽  
Chia Hsiang Chang ◽  
Yu-Jen Chen ◽  
Ankam Vinod Kumar Reddy

ABSTRACT Generally, the environmental wind speeds in urban areas are relatively low due to clustered buildings. At low wind speeds, an aerodynamic stall occurs near the blade roots of a horizontal axis wind turbine (HAWT), leading to decay of the power coefficient. The research targets to design canards with optimal parameters for a small-scale HAWT system operated at variable rotational speeds. The design was to enhance the performance by delaying the aerodynamic stall near blade roots of the HAWT to be operated at low wind speeds. For the optimal design of canards, flow fields of the sample blades with and without canards were both simulated and compared with the experimental data. With the verification of our simulations, Taguchi analyses were performed to seek the optimum parameters of canards. This study revealed that the peak performance of the optimized canard system operated at 540 rpm might be improved by ∼35%.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 70
Author(s):  
Vladimir Dotsenko ◽  
Roman Prokudin ◽  
Alexander Litvinenko

The article deals with the optimal control of the positional electric drive of the stator element of a segment-type wind turbine. The calculation options charts current in the assumption of the minimum energy consumption and the implementation of line chart current using the phenomenon of capacitor discharge. The analysis of the implementation is expressed in a jump-like change in current and a triangular graph of the speed change. This article deals with small capacity synchronous wind turbine generators with a segment type stator. These units have the possibility of intentionally changing the air gap between the rotor and stator. This allows: (1) Reduce the starting torque on the rotor shaft, which will allow the rotor to pick up at low wind speeds. (2) Equivalent to change of air gap in this case is change of excitation of synchronous generators. Thus, the purpose of the article is to consider a method of excitation of generators in a segmented design, by controlling the gap with the electric drive, while providing control should be carried out with minimal losses.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ferhat Bingöl

Wind farm siting relies on in situ measurements and statistical analysis of the wind distribution. The current statistical methods include distribution functions. The one that is known to provide the best fit to the nature of the wind is the Weibull distribution function. It is relatively straightforward to parameterize wind resources with the Weibull function if the distribution fits what the function represents but the estimation process gets complicated if the distribution of the wind is diverse in terms of speed and direction. In this study, data from a 101 m meteorological mast were used to test several estimation methods. The available data display seasonal variations, with low wind speeds in different seasons and effects of a moderately complex surrounding. The results show that the maximum likelihood method is much more successful than industry standard WAsP method when the diverse winds with high percentile of low wind speed occur.


2020 ◽  
Vol 1 (2) ◽  
pp. 61-67
Author(s):  
Mohammad Rizqi Saputra ◽  
Nur Kholis ◽  
Mohammad Munib Rosadi

Abstract Wind is a renewable mechanical energy source that can be used as an energy source because the energy from the wind can be used to drive wind turbines. Savonius wind turbine type L is a tool to convert wind energy into electricity with a simple construction and can work with low wind speeds. The purpose of this study was to determine the effect of differences in diameter and number of blades on the power produced. The method used is a simulation method with an artificial wind source. With a wind speed of 8 m/s. The data analysis technique used is 2-way ANOVA using the SPSS application. Variations used are 20 cm and 40 cm in diameter and the number of blades 2 and 4 . The result is a wind turbine with a variation of 40 cm and 4 blades capable of producing the best output which produces 350.98 RPM voltage of 11.64 volts current of 0.144 amperes and power of 1,676 watts. As for BHP, torque, and turbine efficiency with a variation of 40 cm and 4 blades capable of producing the best output where the generated BHP is 3.352 watts, torque 0.091 N / m efficiency 2.17. For the results of calculations with SPSS wind turbines with a diameter variation of 40 cm and 4 blades, the biggest power is 1,744 watts and for BHP produces 3.3520 watts and the efficiency reaches 2.17%. Keyword : Diameter, number of blade, Performance Abstrak Angin adalah sumber energi mekanik yang bisa diperbaharui sehingga dapat dimanfaatkan sebagai sumber energi karena dapat digunakan untuk menggerakkan turbin angin. Turbin angin savonius tipe L merupakan alat untuk mengubah energi angin menjadi listrik dengan konstruksi yang sederhana dan dapat bekerja dengan kecepatan angin yang rendah. Tujuan penelitian ini untuk mengetahui pengaruh perbedaan diameter dan jumlah sudu terhadap unjuk kerja yang dihasilkan. Metode yang digunakan adalah metode simulasi dengan sumber angin buatan. Dengan kecepatan angin 8 m/s. Teknik analisis data yang digunakan adalah ANOVA 2 arah dengan menggunakan aplikasi SPSS. Variasi yang digunakan adalah diameter 20 cm dan 40 cm serta jumlah sudu 2 dan 4. Hasilnya turbin angin dengan variasi 40 cm dan 4 sudu mampu menghasilkan output terbaik yang dimana menghasilkan RPM 350,98 tegangan 11,64 volt arus 0,144 ampere dan daya 1,676 watt. Sedangkan untuk BHP, torsi, dan efisensi turbin dengan variasi 40 cm dan 4 sudu mampu menghasilkan output yang terbaik dimana BHP yang dihasilkan adalah 3,352 watt, torsi 0,091 N/m efisisensi 2,17. Untuk hasil perhitungan dengan SPSS turbin angin dengan variasi diameter 40 cm dan 4 sudu menghasilkan daya terbesar yakni 1,744 watt dan untuk BHP menghasilkan 3,3520 watt dan efisiensinya mencapai 2,17 % untuk torsi tertinggi dicapai turbin variasi 40 cm 2 sudu dengan torsi 0,116.   Kata kunci : diameter, jumlah sudu, unjuk kerja


2020 ◽  
Author(s):  
Mohanad Qomsiya ◽  
Robert W. Fletcher

Abstract Sustainable energy utilization on Mars is fundamental for the success of habitation on Mars. The two sustainable energy sources for In-Situ Resource Utilization (ISRU) with the highest potential for implementation on Mars are solar and wind. Unfortunately, the former cannot provide a reliable continuous source of energy for multiple reasons. Accordingly, wind energy is presented as a viable solution, or as a strong potential complement to solar energy. The authors investigate different sites on Mars by evaluating the available wind resources to select the most feasible location in terms of energy yield and other critical habitability criteria. This work is conducted by applying the General Circulation Model (GCM) simulation, this particular analysis of wind harvesting feasibility on Mars will be studied by employing the Mars Climate Database (MCD) model. In addition, this novel research provides a systematic approach for future energy harvesting projects on Mars. Moreover, it evaluates different potential wind turbine design concepts applicable for the Martian ISRU. The results of this research lay the foundation for future energy utilization necessary for habitation to thrive, as well as it will be a key for future exploration missions. Ultimately, this will enrich our understanding of wind turbine systems.


2021 ◽  
Vol 104 ◽  
pp. 83-88
Author(s):  
Rahmat Wahyudi ◽  
Diniar Mungil Kurniawati ◽  
Alfian Djafar

The potential of wind energy is very abundant but its utilization is still low. The effort to utilize wind energy is to utilize wind energy into electrical energy using wind turbines. Savonius wind turbines have a very simple shape and construction, are inexpensive, and can be used at low wind speeds. This research aims to determine the effect of the slot angle on the slotted blades configuration on the performance produced by Savonius wind turbines. Slot angle variations used are 5o ,10o , and 15o with slotted blades 30% at wind speeds of 2,23 m/s to 4,7 m/s using wind tunnel. The result showed that a small slot angle variation of 5o produced better wind turbine performance compared to a standard blade at low wind speeds and a low tip speed ratio.


2019 ◽  
Vol 1 (1) ◽  
pp. 185-204 ◽  
Author(s):  
Palanisamy Mohan Kumar ◽  
Krishnamoorthi Sivalingam ◽  
Teik-Cheng Lim ◽  
Seeram Ramakrishna ◽  
He Wei

Small wind turbines are key devices for micro generation in particular, with a notable contribution to the global wind energy sector. Darrieus turbines, despite being highly efficient among various types of vertical axis turbines, received much less attention due to their starting characteristics and poor performance in low wind speeds. Radically different concepts are proposed as a potential solution to enhance the performance of Darrieus turbine in the weak wind flows, all along the course of Darrieus turbine development. This paper presents a comprehensive review of proposed concepts with the focus set on the low wind speed performance and critically assessing their applicability based on economics, reliability, complexity, and commercialization aspects. The study is first of its kind to consolidate and compare various approaches studied on the Darrieus turbine with the objective of increasing performance at low wind. Most of the evaluated solutions demonstrate better performance only in the limited tip speed ratio, though they improve the low wind speed performance. Several recommendations have been developed based on the evaluated concepts, and we concluded that further critical research is required for a viable solution in making the Darrieus turbine a low speed device.


2016 ◽  
Vol 84 (4) ◽  
pp. 2435-2445 ◽  
Author(s):  
Abderrahmen Mechter ◽  
Karim Kemih ◽  
Malek Ghanes

Sign in / Sign up

Export Citation Format

Share Document