scholarly journals Design and Development of Low Weight, Titanium Aluminide Airfoils for High Performance Industrial Gas Turbines meeting 65% Combined Cycle Efficiency

2020 ◽  
Author(s):  
Sam Miller

Author(s):  
Markus Feigl ◽  
Geoff Myers ◽  
Stephen R. Thomas ◽  
Raub Smith

This paper describes the concept and benefits of the fuel moisturization system for the GE H System™ steam-cooled industrial gas turbine. The DLN2.5H combustion system and fuel moisturization system are both described, along with the influence of fuel moisture on combustor performance as measured during full-scale, full-pressure rig testing of the DLN2.5H combustion system. The lean, premixed DLN2.5H combustion system was targeted to deliver single-digit NOx and CO emissions from 40% to 100% combined cycle load in both the Frame 7H (60 Hz) and Frame 9H (50 Hz) heavy-duty industrial gas turbines. These machines are also designed to yield a potential combined-cycle efficiency of 60 percent or higher. Fuel moisturization contributes to the attainment of both the NOx and the combined-cycle efficiency performance goals, as discussed in this paper.



Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.



Author(s):  
A. G. Salsi ◽  
F. S. Bhinder

Industrial gas turbines operate over a wide range of combinations of loads and speeds. The fuel control valve must be designed to cover the entire range precisely. The design of an electrically operated fuel control valve is described and comparison between the predicted and measured performance characteristics is shown.



Author(s):  
Paul Ryan ◽  
Jan Schwerdtfeger ◽  
Markus Rodermann

Compared to conventional manufacturing processes, additive manufacturing offers a degree of freedom that has the potential to revolutionize the turbine components supply chain. Additive manufacturing facilitates the design and manufacture of highly complex components in high performance materials with features that cannot currently be realized with other processes. In addition, shorter development and manufacturing lead-times are possible due to the flexibility of 3D based processing and the absence of expensive, complicated molds or dies. Having been confined for many years to rapid prototyping or R&D applications, additive manufacturing is now making the move to the factory floor. However, a dearth of manufacturing experience makes the development effort and risk of costly mistakes a deterrent for many organizations that would otherwise be interested in exploring the benefits of additive manufacturing. A former manufacturer of industrial gas turbines recently established an additive manufacturing workshop designed to deliver highly complex engine-ready components that can contribute to increased performance of the gas turbine. A strong emphasis on process validation and implementation of the organization’s best practice Lean and Quality methodologies has laid solid foundations for a highly capable manufacturing environment. This paper describes the approach taken to ensure that the workshop achieves a high level of operational excellence. Process development topics explored in the paper include the following: • Planning of process flow and cell layout to permit the maximum lean performance • Strategy used to determine machine specification and selection method. • Assessment of process capability • Influence of design for manufacture on process efficiency and product quality • Experience gained during actual production of first commercial components



2017 ◽  
Vol 1 ◽  
pp. K4MD26 ◽  
Author(s):  
Seyfettin C. Gülen

AbstractThis article evaluates the improvement in gas turbine combined cycle power plant efficiency and output via pressure gain combustion (PGC). Ideal and real cycle calculations are provided for a rigorous assessment of PGC variants (e.g., detonation and deflagration) in a realistic power plant framework with advanced heavy-duty industrial gas turbines. It is shown that PGC is the single-most potent knob available to the designers for a quantum leap in combined cycle performance.



Author(s):  
Satoshi Hada ◽  
Masanori Yuri ◽  
Junichiro Masada ◽  
Eisaku Ito ◽  
Keizo Tsukagoshi

MHI recently developed a 1600°C class J-type gas turbine, utilizing some of the technologies developed in the National Project to promote the development of component technology for the next generation 1700°C class gas turbine. This new frame is expected to achieve higher combined cycle efficiency and will contribute to reduce CO2 emissions. The target combined cycle efficiency of the J type gas turbine will be above 61.5% (gross, ISO standard condition, LHV) and the 1on1 combined cycle output will reach 460MW for 60Hz engine and 670MW for 50Hz engine. This new engine incorporates: 1) A high pressure ratio compressor based on the advanced M501H compressor, which was verified during the M501H development in 1999 and 2001. 2) Steam cooled combustor, which has accumulated extensive experience in the MHI G engine (> 1,356,000 actual operating hours). 3) State-of-art turbine designs developed through the 1700°C gas turbine component technology development program in Japanese National Project for high temperature components. This paper discusses the technical features and the updated status of the J-type gas turbine, especially the operating condition of the J-type gas turbine in the MHI demonstration plant, T-Point. The trial operation of the first M501J gas turbine was started at T-point in February 2011 on schedule, and major milestones of the trial operation have been met. After the trial operation, the first commercial operation has taken place as scheduled under a predominantly Daily-Start-and-Stop (DSS) mode. Afterward, MHI performed the major inspection in October 2011 in order to check the mechanical condition, and confirmed that the hot parts and other parts were in sound condition.



Author(s):  
F. L. Robson ◽  
D. J. Seery

The Department of Energy’s Federal Energy Technology Center (FETC) is sponsoring the Combustion 2000 Program aimed at introducing clean and more efficient advanced technology coal-based power systems in the early 21st century. As part of this program, the United Technologies Research Center has assembled a seven member team to identify and develop the technology for a High Performance Power Systems (HIPPS) that will provide in the near term, 47% efficiency (HHV), and meet emission goals only one-tenth of current New Source Performance Standards for coal-fired power plants. In addition, the team is identifying advanced technologies that could result in HIPPS with efficiencies approaching 55% (HHV). The HIPPS is a combined cycle that uses a coal-fired High Temperature Advanced Furnace (HITAF) to preheat compressor discharge air in both convective and radiant heaters. The heated air is then sent to the gas turbine where additional fuel, either natural gas or distillate, is burned to raise the temperature to the levels of modern gas turbines. Steam is raised in the HITAF and in a Heat Recovery Steam Generator for the steam bottoming cycle. With state-of-the-art frame type gas turbines, the efficiency goal of 47% is met in a system with more than two-thirds of the heat input furnished by coal. By using advanced aeroderivative engine technology, HIPPS in combined-cycle and Humid Air Turbine (HAT) cycle configurations could result in efficiencies of over 50% and could approach 55%. The following paper contains descriptions of the HIPPS concept including the HITAF and heat exchangers, and of the various gas turbine configurations. Projections of HIPPS performance, emissions including significant reduction in greenhouse gases are given. Application of HIPPS to repowering is discussed.



1983 ◽  
Vol 105 (4) ◽  
pp. 844-850 ◽  
Author(s):  
I. G. Rice

High-cycle pressure-ratio (38–42) gas turbines being developed for future aircraft and, in turn, industrial applications impose more critical disk and casing cooling and thermal-expansion problems. Additional attention, therefore, is being focused on cooling and the proper selection of materials. Associated blade-tip clearance control of the high-pressure compressor and high-temperature turbine is critical for high performance. This paper relates to the use of extracted steam from a steam turbine as a coolant in a combined cycle to enhance material selection and to control expansion in such a manner that the cooling process increases combined-cycle efficiency, gas turbine output, and steam turbine output.



Author(s):  
Geoff Myers ◽  
Dan Tegel ◽  
Markus Feigl ◽  
Fred Setzer ◽  
William Bechtel ◽  
...  

The lean, premixed DLN2.5H combustion system was designed to deliver low NOx emissions from 50% to 100% load in both the Frame 7H (60 Hz) and Frame 9H (50 Hz) heavy-duty industrial gas turbines. The H machines employ steam cooling in the gas turbine, a 23:1 pressure ratio, and are fired at 1440 C (2600 F) to deliver over-all thermal efficiency for the combined-cycle system near 60%. The DLN2.5H combustor is a modular can-type design, with 14 identical chambers used on the 9H machine, and 12 used on the smaller 7H. On a 9H combined-cycle power plant, both the gas turbine and steam turbine are fired using the 14-chamber DLN2.5H combustion system. An extensive full-scale, full-pressure rig test program developed the fuel-staged dry, low emissions combustion system over a period of more than five years. Rig testing required test stand inlet conditions of over 50 kg/s at 500 C and 28 bar, while firing at up to 1440 C, to simulate combustor operation at base load. The combustion test rig simulated gas path geometry from the discharge of the annular tri-passage diffuser through the can-type combustion liner and transition piece, to the inlet of the first stage turbine nozzle. The present paper describes the combustion system, and reports emissions performance and operability results over the gas turbine load and ambient temperature operating range, as measured during the rig test program.



Sign in / Sign up

Export Citation Format

Share Document