scholarly journals Non-Invasive Parameter Identification in Rotordynamics via Fluid Film Bearings: Linking Active Lubrication and Operational Modal Analysis

Author(s):  
Ilmar Ferreira Santos ◽  
Peter Kjær Svendsen

In recent years, theoretical and experimental efforts have transformed the conventional tilting-pad journal bearing (TPJB) into a smart mechatronic machine element. The application of electromechanical elements into rotating systems makes feasible the generation of controllable forces over the rotor as a function of a suitable control signal. The servovalve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film forces, resulting from a strong coupling between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If non-invasive forces are generated via lubricant fluid film, in situ parameter identification can be carried out, enabling evaluation of the mechanical condition of the rotating machine. Using the lubricant fluid film as a non-invasive calibrated shaker is troublesome, once several transfer functions among mechanical, hydraulic and electronic components become necessary. In this framework the main original contribution of this paper is to show experimentally that the knowledge about the several transfer functions can be bypassed by using output-only identification techniques. The manuscript links controllable (active) lubrication techniques with operational modal analysis, allowing for in-situ parameter identification in rotordynamics, i.e. estimation of damping ratio and natural frequencies. The experimental analysis is carried out on a rigid rotor-level system supported by one single pair of pads. The estimation of damping and natural frequencies is performed using classical experimental modal analysis (EMA) and operational modal analysis (OMA). Very good agreements between the two experimental approaches are found. Maximum values of the main input parameters, namely servovalve voltage and radial injection pressure, are experimentally found with the objective of defining ranges of non-invasive perturbation forces.


Author(s):  
Ilmar Ferreira Santos ◽  
Peter Kjær Svendsen

In recent years, theoretical and experimental efforts have transformed the conventional tilting-pad journal bearing (TPJB) into a smart mechatronic machine element. The application of electromechanical elements into rotating systems makes feasible the generation of controllable forces over the rotor as a function of a suitable control signal. The servovalve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film forces, resulting from a strong coupling between hydrodynamic, hydrostatic, and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If “noninvasive” forces are generated via lubricant fluid film, “in situ” parameter identification can be carried out, enabling evaluation of the mechanical condition of the rotating machine. Using the lubricant fluid film as a “noninvasive calibrated shaker” is troublesome, once several transfer functions among mechanical, hydraulic, and electronic components become necessary. In this framework, the main original contribution of this paper is to show experimentally that the knowledge about the several transfer functions can be bypassed by using output-only identification techniques. This paper links controllable (active) lubrication techniques with operational modal analysis, allowing for in situ parameter identification in rotordynamics, i.e., estimation of damping ratio and natural frequencies. The experimental analysis is carried out on a rigid rotor-level system supported by one single pair of pads. The estimation of damping and natural frequencies is performed using classical experimental modal analysis (EMA) and operational modal analysis (OMA). Very good agreements between the two experimental approaches are found. Maximum values of the main input parameters, namely, servovalve voltage and radial injection pressure, are experimentally found with the objective of defining ranges of noninvasive perturbation forces.



Author(s):  
José A. Vázquez ◽  
Lloyd E. Barrett ◽  
Ronald D. Flack

A laboratory rotor, representing a scaled down model of a three stage compressor supported by fluid film bearings on anisotropic flexible supports was analyzed. The support characteristics were measured at the bearing locations by exciting the bearing housings with electromechanical shakers and measuring the acceleration. Direct, cross-coupled and cross talk accelerance between supports were measured. Unbalance response and stability analyses of the rotor were performed using polynomial transfer functions extracted from the measured accelarance data. The predicted critical speeds and instability threshold agree with measured data. Predictions using other support models are included to show the effectiveness of this method.



As natural frequencies and mode shapes are often a key to understanding dynamic characteristics of structural elements, modal analysis provides a viable means to determine these properties. This paper investigates the dynamic characteristics of a healthy and unhealthy condition of a commercially used helical gear using the Frequency Domain Decomposition (FDD) identification algorithm in Operational Modal Analysis (OMA). For the unhealthy condition, a refined range of percentage of defects are introduced to the helical gear starting from one (1) tooth being defected (1/60 teeth) to six (6) teeth being defected (6/60 teeth). The specimen is tested under a free-free boundary condition for its simplicity and direct investigation purpose. Comparison of the results of these varying conditions of the structure will be shown to justify the validity of the method used. Acceptable modal data are obtained by considering and accentuating on the technical aspects in processing the experimental data which are critical aspects to be addressed. The natural frequencies and mode shapes are obtained through automatic and manual peak-picking process from Singular Value Decomposition (SVD) plot using Frequency Domain Decomposition (FDD) technique and the results are validated using the established Modal Assurance Criterion (MAC) indicator. The results indicate that OMA using FDD algorithm is a good method in identifying the dynamic characteristics and hence, is effective in detection of defects in this rotating element



2021 ◽  
Author(s):  
Edoardo Rossi ◽  
Michele D’Amato ◽  
Rosario Gigliotti ◽  
Marco Sebastiani

<p>Elastomeric bearings used as seismic isolation devices are key elements in the protection of constructions against earthquakes. They enable structures to exhibit very high performances when subject to extreme events, preventing damage both to structural and non-structural components. Their characteristics, however, are prone to change with time due to long term effects such as aging. Regular inspection and monitoring of their state are thus fundamental activities needed to ensure the required performances. The present work reviews the most common strategies adopted for such purpose, including visual inspections, Operational Modal Analysis (OMA), and quick release tests. An innovative characterisation method is also presented. Such method, with the use of a nanoindenter, enables testing of a small rubber sample (3 mm in diameter) cored from a device. Its suitability is confirmed through a comparison of the same device tested in a traditional setup.</p>



2014 ◽  
Vol 58 (04) ◽  
pp. 216-224 ◽  
Author(s):  
Esben Orlowitz ◽  
Anders Brandt

The dynamic characteristics of ship structures are becoming more important as the flexibility of modern ships increases, for example, to predict reliable design life. This requires an accurate dynamic model of the structure, which, because of complex vibration environment and complex boundary conditions, can only be validated by measurements. In the present paper the use of operational modal analysis (OMA) for dynamic characterization of a ship structure based on experimental data, from a full-scale measurement of a 210-m long Ro-Lo ship during sea trial, is presented. The measurements contain three different data sets obtained under different operating conditions of the ship: 10 knots cruising speed, 18 knots cruising speed, and at anchor. Natural frequencies, modal damping ratios, and mode shapes have been successfully estimated for the first 10 global modes. Damping ratios for the current ship were found within the range 0.9%–1.9% and natural frequencies were found to range from 0.8 to 4.1 Hz for the first 10 global modes of the ship at design speed (18 knots). The three different operating conditions showed, in addition, a speed dependency of the natural frequencies and damping ratios. The natural frequencies were found to be lower for the 18-knots condition compared with the two other conditions, most significantly for the vertical bending modes. Also, for the vertical bending modes, the damping ratios increased by 28%–288% when the speed increased from 10 to 18 knots. Other modes were not found to have the same strong speed dependency.



2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
E. Ercan ◽  
A. Nuhoglu

This paper describes the results of a model updating study conducted on a historical aqueduct, called Veziragasi, in Turkey. The output-only modal identification results obtained from ambient vibration measurements of the structure were used to update a finite element model of the structure. For the purposes of developing a solid model of the structure, the dimensions of the structure, defects, and material degradations in the structure were determined in detail by making a measurement survey. For evaluation of the material properties of the structure, nondestructive and destructive testing methods were applied. The modal analysis of the structure was calculated by FEM. Then, a nondestructive dynamic test as well as operational modal analysis was carried out and dynamic properties were extracted. The natural frequencies and corresponding mode shapes were determined from both theoretical and experimental modal analyses and compared with each other. A good harmony was attained between mode shapes, but there were some differences between natural frequencies. The sources of the differences were introduced and the FEM model was updated by changing material parameters and boundary conditions. Finally, the real analytical model of the aqueduct was put forward and the results were discussed.



Author(s):  
Wenlong Yang ◽  
Lei Li ◽  
Qiang Fu ◽  
Yao Teng ◽  
Shuqing Wang ◽  
...  

Experimental modal analysis (EMA) is widely implemented to obtain the modal parameters of an offshore platform, which is crucial to many practical engineering issues, such as vibration control, finite element model updating and structural health monitoring. Traditionally, modal parameters are identified from the information of both the input excitation and output response. However, as the size of offshore platforms becomes huger, imposing artificial excitation is usually time-consuming, expensive, sophisticated and even impossible. To address this problem, a preferred solution is operational modal analysis (OMA), which means the modal testing and analysis for a structure is in its operational condition subjected to natural excitation with output-only measurements. This paper investigate the applicability of utilizing response from natural ice loading for operational modal analysis of real offshore platforms. The test platform is the JZ20-2MUQ Jacket platform located in the Bohai Bay, China. A field experiment is carried out in winter season, when the platform is excited by floating ices. An accelerometer is installed on a leg and two segments of acceleration response are employed for identifying the modal parameters. In the modal parameter identification, specifically applied is the data-driven stochastic sub-space identification (SSI-data) method. It is one of the most advanced methods based on the first-order stochastic model and the QR algorithm for computing the structural eigenvalues. To distinguish the structural modal information, stability diagrams are constructed by identifying parametric models of increasing order. Observing the stability diagrams, the modal frequencies and damping ratios of four structural modes can be successfully identified from both segments. The estimated information from both segments are almost identical, which demonstrates the identification is trustworthy. Besides, the stability diagrams from SSI-data method are very clean, and the poles associated with structural modes can become stabilized at very low model order. The research in this paper is meaningful for the platforms serving in cold regions, where the ices could be widespread. Utilizing the response from natural ice loading for modal parameter identification would be efficient and cost-effective.



Author(s):  
Ilmar Ferreira Santos ◽  
Alejandro Cerda Varela

The servo valve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film forces, resulting from a strong coupling between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. An accurate characterization of the active oil film forces is of fundamental importance to elucidate the feasibility of applying the active lubrication as non-invasive perturbation forces, or in other words, as a “calibrated shaker”, to perform in-situ rotordynamic tests. The main original contributions of this paper are three: a) the experimental characterization of the active fluid film forces generated in an actively-lubricated tilting-pad journal bearing in the frequency domain and the application of such a controllable bearing as a calibrated shaker aiming at determining the frequency response function (FRF) of rotordynamic systems; b) experimental quantification of the influence of the supply pressure and servo valve input signal on the FRF of rotor-journal bearing systems; c) experimental indication of how small such active fluid film forces (perturbation forces) should be, in order to perturb the rotor-journal bearing system without significantly changing its dynamic characteristics. To validate the experimental procedure and results obtained via actively-lubricated bearing, similar experimental tests are carried out using an electro-magnetic shaker. Very good agreements between the two experimental approaches are found. Maximum values of the main input parameters, namely servo valve voltage and radial injection pressure, are experimentally identified/suggested with the objective of obtaining non-invasive perturbation forces.



2002 ◽  
Vol 124 (2) ◽  
pp. 369-374 ◽  
Author(s):  
J. A. Va´zquez ◽  
L. E. Barrett ◽  
R. D. Flack

A laboratory rotor, representing a scaled-down model of a three-stage compressor supported by fluid film bearings on anisotropic flexible supports was analyzed. The support characteristics were measured at the bearing locations by exciting the bearing housings with electromechanical shakers and measuring the acceleration. Direct, cross-coupled, and cross-talk accelerance between supports were measured. Unbalance response and stability analyses of the rotor were performed using polynomial transfer functions extracted from the measured accelarance data. The predicted critical speeds and instability threshold agree with measured data. Predictions using other support models are included to show the effectiveness of this method.



Author(s):  
Konstantin Kravchenko ◽  
Sergey Kugaevsky ◽  
Michail Zhuravlev ◽  
Dmitry Elkind


Sign in / Sign up

Export Citation Format

Share Document