scholarly journals The Impeller Exit Flow Coefficient As a Performance Map Variable for Predicting Centrifugal Compressor Off-Design Operation Applied to a Supercritical CO2 Working Fluid

Author(s):  
Eric Liese ◽  
Stephen E. Zitney

A multi-stage centrifugal compressor model is presented with emphasis on analyzing use of an exit flow coefficient vs. an inlet flow coefficient performance parameter to predict off-design conditions in the critical region of a supercritical carbon dioxide (CO2) power cycle. A description of the performance parameters is given along with their implementation in a design model (number of stages, basic sizing, etc.) and a dynamic model (for use in transient studies). A design case is shown for two compressors, a bypass compressor and a main compressor, as defined in a process simulation of a 10 megawatt (MW) supercritical CO2 recompression Brayton cycle. Simulation results are presented for a simple open cycle and closed cycle process with changes to the inlet temperature of the main compressor which operates near the CO2 critical point. Results showed some difference in results using the exit vs. inlet flow coefficient correction, however, it was not significant for the range of conditions examined. This paper also serves as a reference for future works, including a full process simulation of the 10 MW recompression Brayton cycle.

Author(s):  
J. Schmitt ◽  
R. Willis ◽  
D. Amos ◽  
J. Kapat ◽  
C. Custer

This study seeks to design the aerodynamic features a first stage vane for a 100 MW class supercritical CO2 Brayton cycle turbomachine. For a turbine inlet temperature of 1350 K, the recuperated configuration is found to provide the highest cycle efficiency, and the corresponding cycle parameters are then used to design the turbine stages. A 6-stage turbine is selected and the first stage is designed following a one-dimensional mean line approach. Initial mean line turbomachine parameters (work coefficient and flow coefficient) are selected to provide high thermodynamic efficiency and simple radial equilibrium equation principles. Turning loss correlations are utilized to define and optimize hub and casing velocity triangle parameters. Typical turbomachinery characteristic parameters are used to compare the carbon dioxide turbine with typical air combustion turbines. Detailed aerodynamic analysis is performed on a complete three-dimensional model of the vane flow field using a commercial computational fluid dynamics code, STAR-CCM+. Actual properties of the working fluid are input to the model from the REFPROP database provided by the US National Institute of Standards and Technology (NIST). The detailed flow field is computed, from which aerodynamic loss coefficients are calculated. The computer model confirms that the design is successful in turning supercritical carbon dioxide at the prescribed angle and pressure. However, results of the real fluid simulation show that aerodynamic losses caused the stage efficiency to be about 4% below the design target.


Author(s):  
Thomas Conboy ◽  
Steven Wright ◽  
James Pasch ◽  
Darryn Fleming ◽  
Gary Rochau ◽  
...  

Supercritical CO2 (S-CO2) power cycles offer the potential for better overall plant economics due to their high power conversion efficiency over a moderate range of heat source temperatures, compact size, and potential use of standard materials in construction [1,2,3,4]. Sandia National Labs (Albuquerque, NM, US) and the US Department of Energy (DOE-NE) are in the process of constructing and operating a megawatt-scale supercritical CO2 split-flow recompression Brayton cycle with contractor Barber-Nichols Inc. [5] (Arvada, CO, US). This facility can be counted among the first and only S-CO2 power producing Brayton cycles anywhere in the world. The Sandia-DOE test-loop has recently concluded a phase of construction that has substantially upgraded the facility by installing additional heaters, a second recuperating printed circuit heat exchanger (PCHE), more waste heat removal capability, higher capacity load banks, higher temperature piping, and more capable scavenging pumps to reduce windage within the turbomachinery. With these additions, the loop has greatly increased its potential for electrical power generation — according to models, as much as 80 kWe per generator depending on loop configuration — and its ability to reach higher temperatures. To date, the loop has been primarily operated as a simple recuperated Brayton cycle, meaning a single turbine, single compressor, and undivided flow paths. In this configuration, the test facility has begun to realize its upgraded capacity by achieving new records in turbine inlet temperature (650°F/615K), shaft speed (52,000 rpm), pressure ratio (1.65), flow rate (2.7 kg/s), and electrical power generated (20kWe). Operation at higher speeds, flow rates, pressures and temperatures has allowed a more revealing look at the performance of essential power cycle components in a supercritical CO2 working fluid, including recuperation and waste heat rejection heat exchangers (PCHEs), turbines and compressors, bearings and seals, as well as auxiliary equipment. In this report, performance of these components to date will be detailed, including a discussion of expected operational limits as higher speeds and temperatures are approached.


Author(s):  
Vaclav Dostal ◽  
Michael J. Driscoll ◽  
Pavel Hejzlar ◽  
Neil E. Todreas

Although proposed more than 35 years ago, the use of supercritical CO2 as the working fluid in a closed circuit Brayton cycle has so far not been implemented in practice. Industrial experience in several other relevant applications has improved prospects, and its good efficiency at modest temperatures (e.g., ∼45% at 550°C) make this cycle attractive for a variety of advanced nuclear reactor concepts. The version described here is for a gas-cooled, modular fast reactor. In the proposed gas-cooled fast breeder reactor design of present interest, CO2 is also especially attractive because it allows the use of metal fuel and core structures. The principal advantage of a supercritical CO2 Brayton cycle is its reduced compression work compared to an ideal gas such as helium: about 15% of gross power turbine output vs. 40% or so. This also permits the simplification of use of a single compressor stage without intercooling. The requisite high pressure (∼20 MPa) also has the benefit of more compact heat exchangers and turbines. Finally, CO2 requires significantly fewer turbine stages than He, its principal competitor for nuclear gas turbine service. One disadvantage of CO2 in a direct cycle application is the production of N-16, which will require turbine plant shielding (albeit much less than in a BWR). The cycle efficiency is also very sensitive to recuperator effectiveness and compressor inlet temperature. It was found necessary to split the recuperator into separate high- and low-temperature components, and to employ intermediate recompression, to avoid having a pinch-point in the cold end of the recuperator. Over the past several decades developments have taken place that make the acceptance of supercritical CO2 systems more likely: supercritical CO2 pipelines are in use in the western US in oil-recovery operations; 14 advanced gas-cooled reactors (AGR) are employed in the UK at CO2 temperatures up to 650°C; and utilities now have experience with Rankine cycle power plants at pressures as high as 25 MPa. Furthermore, CO2 is the subject of R&D as the working fluid in schemes to sequester CO2 from fossil fuel combustion and for refrigeration service as a replacement for CFCs.


Author(s):  
Thomas Conboy ◽  
Steven Wright ◽  
James Pasch ◽  
Darryn Fleming ◽  
Gary Rochau ◽  
...  

Supercritical CO2 (S-CO2) power cycles offer the potential for better overall plant economics due to their high power conversion efficiency over a moderate range of heat source temperatures, compact size, and potential use of standard materials in construction. Sandia National Labs (Albuquerque, NM) and the U.S. Department of Energy (DOE-NE) are in the process of constructing and operating a megawatt-scale supercritical CO2 split-flow recompression Brayton cycle with contractor Barber-Nichols Inc. (Arvada, CO). This facility can be counted among the first and only S-CO2 power producing Brayton cycles anywhere in the world. The Sandia-DOE test-loop has recently concluded a phase of construction that has substantially upgraded the facility by installing additional heaters, a second recuperating printed circuit heat exchanger (PCHE), more waste heat removal capability, higher capacity load banks, higher temperature piping, and more capable scavenging pumps to reduce windage within the turbomachinery. With these additions, the loop has greatly increased its potential for electrical power generation, and its ability to reach higher temperatures. To date, the loop has been primarily operated as a simple recuperated Brayton cycle, meaning a single turbine, single compressor, and undivided flow paths. In this configuration, the test facility has begun to realize its upgraded capacity by achieving new records in turbine inlet temperature (650 °F/615 K), shaft speed (52,000 rpm), pressure ratio (1.65), flow rate (2.7 kg/s), and electrical power generated (20 kWe). Operation at higher speeds, flow rates, pressures, and temperatures has allowed a more revealing look at the performance of essential power cycle components in a supercritical CO2 working fluid, including recuperation and waste heat rejection heat exchangers (PCHEs), turbines and compressors, bearings and seals, as well as auxiliary equipment. In this report, performance of these components to date will be detailed, including a discussion of expected operational limits as higher speeds and temperatures are approached.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Zhen Pan ◽  
Mingyue Yan ◽  
Liyan Shang ◽  
Ping Li ◽  
Li Zhang ◽  
...  

Abstract This paper proposes a new type of Gas Turbine Cycle-supercritical CO2 Brayton/organic Rankine cycle (GT-SCO2/ORC) cogeneration system, in which the exhaust gas from gas-fired plants generates electricity through GT and then the remaining heat is absorbed by the supercritical CO2 (SCO2) Brayton cycle and ORC. CO2 contained in the exhaust gas is absorbed by monoethanolamine (MEA) and liquefied via liquified natural gas (LNG). Introducing thermodynamic efficiencies, thermoeconomic analysis to evaluate the system performance and total system cost is used as the evaluation parameter. The results show that the energy efficiency and exergy efficiency of the system are 56.47% and 45.46%, respectively, and the total cost of the product is 2798.38 $/h. Moreover, with the increase in air compressor (AC) or gas turbine isentropic efficiency, GT inlet temperature, and air preheater (AP) outlet temperature, the thermodynamic efficiencies have upward trends, which proves these four parameters optimize the thermodynamic performance. The total system cost can reach a minimum value with the increase in AC pressure ratio, GT isentropic efficiency, and AC isentropic efficiency, indicating that these three parameters can optimize the economic performance of the cycle. The hot water income increases significantly with the increase in the GT inlet temperature, but it is not cost-effective in terms of the total cost.


Author(s):  
Yongju Jeong ◽  
Seongmin Son ◽  
Seong kuk Cho ◽  
Seungjoon Baik ◽  
Jeong Ik Lee

Abstract Most of the power plants operating nowadays mainly have adopted a steam Rankine cycle or a gas Brayton cycle. To devise a better power conversion cycle, various approaches were taken by researchers and one of the examples is an S-CO2 (supercritical CO2) power cycle. Over the past decades, the S-CO2 power cycle was invented and studied. Eventually the cycle was successful for attracting attentions from a wide range of applications. Basically, an S-CO2 power cycle is a variation of a gas Brayton cycle. In contrast to the fact that an ordinary Brayton cycle operates with a gas phase fluid, the S-CO2 power cycle operates with a supercritical phase fluid, where temperatures and pressures of working fluid are above the critical point. Many advantages of S-CO2 power cycle are rooted from its novel characteristics. Particularly, a compressor in an S-CO2 power cycle operates near the critical point, where the compressibility is greatly reduced. Since the S-CO2 power cycle greatly benefits from the reduced compression work, an S-CO2 compressor prediction under off-design condition has a huge impact on overall cycle performance. When off-design operations of a power cycle are considered, the compressor performance needs to be specified. One of the approaches for a compressor off-design performance evaluation is to use the correction methods based on similitude analysis. However, there are several approaches for deriving the equivalent conditions but none of the approaches has been thoroughly examined for S-CO2 conditions based on data. The purpose of this paper is comparing these correction models to identify the best fitted approach, in order to predict a compressor off-design operation performance more accurately from limited amount of information. Each correction method was applied to two sets of data, SCEIL experiment data and 1D turbomachinery code off-design prediction code generated data, and evaluated in this paper.


Author(s):  
Hang Zhao ◽  
Qinghua Deng ◽  
Wenting Huang ◽  
Zhenping Feng

Supercritical CO2 Brayton cycles (SCO2BC) offer the potential of better economy and higher practicability due to their high power conversion efficiency, moderate turbine inlet temperature, compact size as compared with some traditional working fluids cycles. In this paper, the SCO2BC including the SCO2 single-recuperated Brayton cycle (RBC) and recompression recuperated Brayton cycle (RRBC) are considered, and flexible thermodynamic and economic modeling methodologies are presented. The influences of the key cycle parameters on thermodynamic performance of SCO2BC are studied, and the comparative analyses on RBC and RRBC are conducted. Based on the thermodynamic and economic models and the given conditions, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used for the Pareto-based multi-objective optimization of the RRBC, with the maximum exergy efficiency and the lowest cost per power ($/kW) as its objectives. In addition, the Artificial Neural Network (ANN) is chosen to establish the relationship between the input, output, and the key cycle parameters, which could accelerate the parameters query process. It is observed in the thermodynamic analysis process that the cycle parameters such as heat source temperature, turbine inlet temperature, cycle pressure ratio, and pinch temperature difference of heat exchangers have significant effects on the cycle exergy efficiency. And the exergy destruction of heat exchanger is the main reason why the exergy efficiency of RRBC is higher than that of RBC under the same cycle conditions. Compared with the two kinds of SCO2BC, RBC has a cost advantage from economic perspective, while RRBC has a much better thermodynamic performance, and could rectify the temperature pinching problem that exists in RBC. Therefore, RRBC is recommended in this paper. Furthermore, the Pareto front curve between the cycle cost/ cycle power (CWR) and the cycle exergy efficiency is obtained by multi-objective optimization, which indicates that there is a conflicting relation between them. The optimization results could provide an optimum trade-off curve enabling cycle designers to choose their desired combination between the efficiency and cost. Moreover, the optimum thermodynamic parameters of RRBC can be predicted with good accuracy using ANN, which could help the users to find the SCO2BC parameters fast and accurately.


Author(s):  
Marcel Strätz ◽  
Jörg Starflinger ◽  
Rainer Mertz ◽  
Michael Seewald ◽  
Sebastian Schuster ◽  
...  

In case of an accident in a nuclear power plant with combined initiating events, (loss of ultimate heat sink and station blackout) additional heat removal system could transfer the decay heat from the core to and diverse ultimate heat sink. On additional heat removal system, which is based upon a Brayton cycle with supercritical CO2 as working fluid, is currently investigated within an EU-funded project, sCO2-HeRo (Supercritical carbon dioxide heat removal system). It shall serve as a self-launching, self-propelling and self-sustaining decay heat removal system to be used in severe accident scenarios. Since a Brayton cycle produces more electric power that it consumes, the excess electric power can be used inside the power plant, e.g. recharging batteries. A small-scale demonstrator will be attached to the PWR glass model at Gesellschaft für Simulatorforschung GfS, Essen, Germany. In order to design and build this small-scale model, cycle calculations are performed to determine the design parameters from which a layout can be derived.


Author(s):  
Na Zhang ◽  
Noam Lior

Stored or transported liquid hydrogen for use in power generation needs to be vaporized before combustion. Much energy was invested in the H2 liquefaction process, and recovery of as much of this energy as possible in the re-evaporation process will contribute to both the overall energy budget of the hydrogen use process, and to environmental impact reduction. A new gas turbine cycle is proposed with liquefied hydrogen (LH2) cryogenic exergy utilization. It is a semi-closed recuperative gas turbine cycle with nitrogen as the working fluid. By integration with the liquid H2 evaporation process, the inlet temperature of the compressor is kept very low, and thus the required compression work could be reduced significantly. Internal-fired combustion is adopted which allows a very high turbine inlet temperature, and a higher average heat input temperature is achieved also by internal heat recuperation. As a result, the cycle ha ry attractive thermal performance with the predicted energy efficiency over 79%. The choice of N2 as the working fluid is to allow the use of air as the oxidant in the combustor. The oxygen in the air combines with the fuel H2 to form water, which is easily separated from the N2 by condensation, leaving the N2 as the working fluid. The quantity of this working fluid in the system is maintained constant by continuously evacuating from the system the same amount that is introduced with the air. The cycle is environmentally friendly because no CO2 and other pollutant are emitted. An exergy analysis is conducted to identify the exergy losses in the components and the potential for further system improvement. The biggest exergy destruction is found occurring in the LH2 evaporator due to the relatively higher heat transfer temperature difference. The energy efficiency and exergy efficiency are 79% and 52%, respectively. The system has a back-work ratio only 1/4 of that in a Brayton cycle with ambient as the heat sink, and thus can produce 30.14 MW (53.9%) more work, with the LH2 cryogenic exergy utilization efficiency of 54%.


Author(s):  
Hang Zhao ◽  
Qinghua Deng ◽  
Wenting Huang ◽  
Dian Wang ◽  
Zhenping Feng

Supercritical CO2 Brayton cycles (SCO2BC) including the SCO2 single-recuperated Brayton cycle (RBC) and recompression recuperated Brayton cycle (RRBC) are considered, and flexible thermodynamic and economic modeling methodologies are presented. The influences of the key cycle parameters on thermodynamic performance of SCO2BC are studied, and the comparative analyses on RBC and RRBC are conducted. Nondominated Sorting Genetic Algorithm II (NSGA-II) is selected for the Pareto-based multi-objective optimization of the RRBC, with the maximum exergy efficiency and the lowest cost per power (k$/kW) as its objectives. Artificial neural network (ANN) is chosen to accelerate the parameters query process. It is shown that the cycle parameters such as heat source temperature, turbine inlet temperature, cycle pressure ratio, and pinch temperature difference of heat exchangers have significant effects on the cycle exergy efficiency. The exergy destruction of heat exchanger is the main reason why the exergy efficiency of RRBC is higher than that of the RBC under the same cycle conditions. RBC has a cost advantage from economic perspective, while RRBC has a much better thermodynamic performance, and could rectify the temperature pinching problem that exists in RBC. It is also shown that there is a conflicting relationship between the cycle cost/cycle power (CWR) and the cycle exergy efficiency. The optimization results could provide an optimum tradeoff curve enabling cycle designers to choose their desired combination between the efficiency and cost. ANN could help the users to find the SCO2BC parameters fast and accurately.


Sign in / Sign up

Export Citation Format

Share Document