Numerical Investigation of Self-Driven Fan Performance With Tip-Jet

Author(s):  
Lei Li ◽  
GuoPing Huang ◽  
Jie Chen ◽  
JinChun Wang

Tip-jet rotor system has unique potential value in the area of vertical take-off and landing (VTOL) or short take-off and landing (STOL) concept aircraft. The main objective of the current work is to investigate the aerodynamic properties of a self-driven fan with tip-jet (SDF_TJ) in hover by numerical experiments. In order to obtain the detailed flow phenomena of SDF_TJ, CFD method is performed, which is conducted by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. For the purpose of investigation, the analysis of SDF_TJ performances with different nozzle configurations have been carried out. Current results indicate the conformal tip-jet not only provide the reaction torque, but also augment the fan lift via entraining the main flow above the suction surface of blade. The rotation speed of fan is mainly determined by bleed air parameters and nozzle area, so as to torque self-balance. The total torque produced by jets contains rotor required torque and penalty torque induced by Coriolis force. The blade lift coefficient and the ratio with jet momentum coefficient are influenced by the distance from the nozzle downstream edge to blade trailing. As the lift of SDF_TJ is larger than the thrust generated by jets alone, which could benefit the take-off and landing capability of VTOL concept aircraft.

Author(s):  
Wei Li ◽  
Hua Ouyang ◽  
Zhao-hui Du

To give insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has a very small influence on the turbine efficiency in this investigation. The efficiency difference between the maximum and minimum configuration is nearly 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passed through the mid-channel in the 2nd stator.


2013 ◽  
Vol 694-697 ◽  
pp. 56-60
Author(s):  
Yue Jun Ma ◽  
Ji Tao Zhao ◽  
Yu Min Yang

In the paper, on the basis of three-dimensional Reynolds-averaged Navier-Stokes equations and the RNG κ-ε turbulence model, adopting Three-dimensional unstructured grid and pressure connection the implicit correction SIMPLEC algorithm, and using MRF model which is supported by Fluent, this paper carries out numerical simulation of the internal flow of the centrifugal pump in different operation points. According to the results of numerical simulation, this paper analyzes the bad flow phenomena of the centrifugal pump, and puts forward suggests about configuration perfected of the centrifugal pump. In addition, this paper is also predicted the experimental value of the centrifugal pump performance, which is corresponding well with the measured value.


2011 ◽  
Vol 55-57 ◽  
pp. 343-347 ◽  
Author(s):  
Yi Gang Luan ◽  
Hai Ou Sun

In this article, computational fluid dynamics(CFD) method is used to predict the effect of blade numbers on the pressure drop of axial cyclone separators. A three-dimensional model is built to acquire the resistance of axial cyclone separators with different blade numbers. The flow field inside cyclone separators is calculated using 3D Reynolds-averaged Navier-Stokes equations. And turbulence model is used to simulate the Reynold stress. Also pressure drop of cyclone separators with different blade numbers is expressed as a function of different inlet velocities. At the same inlet velocity with increasing the blade numbers, pressure drops of cyclones reduce greatly. And changing the blade number of cyclone separator is an effective method to improve its resistance performance.


2021 ◽  
Author(s):  
Chen Li ◽  
Peiting Sun ◽  
Hongming Wang

The leading-edge bulges along the extension direction are designed on the marine wingsail. The height and the spanwise wavelength of the protuberances are 0.1c and 0.25c, respectively. At Reynolds number Re=5×105, the Reynolds Averaged Navier-Stokes equations are applied to the simulation of the wingsail with the bulges thanks to ANSYS Fluent finite-volume solver based on the SST K-ω models. The grid independence analysis is carried out with the lift and drag coefficients of the wingsail at AOA = 8° and AOA=20°. The results show that while the efficiency of the wingsail is reduced by devising the leading-edge bulges before stall, the bulges help to improve the lift coefficient of the wingsail when stalling. At AOA=22° under the action of the leading-edge tubercles, a convective vortex is formed on the suction surface of the modified wingsail, which reduces the flow loss. So the bulges of the wingsail can delay the stall.


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 81 ◽  
Author(s):  
Jeremy Pohly ◽  
James Salmon ◽  
James Bluman ◽  
Kabilan Nedunchezian ◽  
Chang-kwon Kang

Various tools have been developed to model the aerodynamics of flapping wings. In particular, quasi-steady models, which are considerably faster and easier to solve than the Navier–Stokes equations, are often utilized in the study of flight dynamics of flapping wing flyers. However, the accuracy of the quasi-steady models has not been properly documented. The objective of this study is to assess the accuracy of a quasi-steady model by comparing the resulting aerodynamic forces against three-dimensional (3D) Navier–Stokes solutions. The same wing motion is prescribed at a fruit fly scale. The pitching amplitude, axis, and duration are varied. Comparison of the aerodynamic force coefficients suggests that the quasi-steady model shows significant discrepancies under extreme pitching motions, i.e., the pitching motion is large, quick, and occurs about the leading or trailing edge. The differences are as large as 1.7 in the cycle-averaged lift coefficient. The quasi-steady model performs well when the kinematics are mild, i.e., the pitching motion is small, long, and occurs near the mid-chord with a small difference in the lift coefficient of 0.01. Our analysis suggests that the main source for the error is the inaccuracy of the rotational lift term and the inability to model the wing-wake interaction in the quasi-steady model.


2021 ◽  
Author(s):  
Shima Yazdani ◽  
Erfan Salimipour ◽  
Ayoob Salimipour

Abstract The present paper numerically investigates the performance of a Co-Flow Jet (CFJ) on the static and dynamic stall control of the NACA 0024 airfoil at Reynolds number 1.5 × 105. The two-dimensional Reynolds-averaged Navier-Stokes equations are solved using the SST k-ω turbulence model. The results show that the lift coefficients at the low angles of attack (up to α = 15̊) are significantly increased at Cµ = 0.06, however for the higher momentum coefficients, it is not seen an improvement in the aerodynamic characteristics. Also, the dynamic stall for a range of α between 0̊ and 20̊ at the mentioned Reynolds number and with the reduced frequency of 0.15 for two CFJ cases with Cµ = 0.05 and 0.07 are investigated. For the case with Cµ = 0.07, the lift coefficient curve did not present a noticeable stall feature compared to Cµ = 0.05. The effect of this active flow control by increasing the Reynolds numbers from 0.5 × 105 to 3 × 105 is also investigated. At all studied Reynolds numbers, the lift coefficient enhances as the momentum coefficient increases where its best performance is obtained at the angle of attack α = 15̊.


2013 ◽  
Vol 43 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Arif Abdullah Rokoni ◽  
A.B.M. Toufique Hasan

Transonic flow over a supercritical airfoil leads to the appearances of unsteady shock waves in theflow field. At certain flow conditions, the interaction of unsteady shock waves with boundary layer becomescomplex and generates self-excited shock oscillation, lift fluctuation and thus initiate the buffet. In the presentstudy, Reynolds averaged Navier-Stokes equations with k-? SST turbulence model has been applied to predictthe shock induced buffet onset for the flow over a supercritical airfoil NASA SC(2) 0714. The free streamtransonic Mach number is kept in the range of 0.71 to 0.75 while the angle of attack is varied in a wide range.The onset of buffet is confirmed by the fluctuating aerodynamic properties such as lift-coefficient, pressurecoefficient, static pressure and so on. The self-excited shock oscillation and the corresponding buffet frequencyare numerically analyzed.DOI: http://dx.doi.org/10.3329/jme.v43i1.15782


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


Sign in / Sign up

Export Citation Format

Share Document