scholarly journals PREDICTION OF TRANSONIC BUFFET ONSET FOR FLOW OVER A SUPERCRITICAL AIRFOIL- A NUMERICAL INVESTIGATION

2013 ◽  
Vol 43 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Arif Abdullah Rokoni ◽  
A.B.M. Toufique Hasan

Transonic flow over a supercritical airfoil leads to the appearances of unsteady shock waves in theflow field. At certain flow conditions, the interaction of unsteady shock waves with boundary layer becomescomplex and generates self-excited shock oscillation, lift fluctuation and thus initiate the buffet. In the presentstudy, Reynolds averaged Navier-Stokes equations with k-? SST turbulence model has been applied to predictthe shock induced buffet onset for the flow over a supercritical airfoil NASA SC(2) 0714. The free streamtransonic Mach number is kept in the range of 0.71 to 0.75 while the angle of attack is varied in a wide range.The onset of buffet is confirmed by the fluctuating aerodynamic properties such as lift-coefficient, pressurecoefficient, static pressure and so on. The self-excited shock oscillation and the corresponding buffet frequencyare numerically analyzed.DOI: http://dx.doi.org/10.3329/jme.v43i1.15782

Author(s):  
Lei Li ◽  
GuoPing Huang ◽  
Jie Chen ◽  
JinChun Wang

Tip-jet rotor system has unique potential value in the area of vertical take-off and landing (VTOL) or short take-off and landing (STOL) concept aircraft. The main objective of the current work is to investigate the aerodynamic properties of a self-driven fan with tip-jet (SDF_TJ) in hover by numerical experiments. In order to obtain the detailed flow phenomena of SDF_TJ, CFD method is performed, which is conducted by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. For the purpose of investigation, the analysis of SDF_TJ performances with different nozzle configurations have been carried out. Current results indicate the conformal tip-jet not only provide the reaction torque, but also augment the fan lift via entraining the main flow above the suction surface of blade. The rotation speed of fan is mainly determined by bleed air parameters and nozzle area, so as to torque self-balance. The total torque produced by jets contains rotor required torque and penalty torque induced by Coriolis force. The blade lift coefficient and the ratio with jet momentum coefficient are influenced by the distance from the nozzle downstream edge to blade trailing. As the lift of SDF_TJ is larger than the thrust generated by jets alone, which could benefit the take-off and landing capability of VTOL concept aircraft.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


Author(s):  
П.А. Поливанов

In this paper a numerical and experimental study of the effect of blowing/suction through a perforated surface on a turbulent boundary layer at a Mach number M = 1.4 is carried out. Most of the calculations were performed by Reynolds-averaged Navier-Stokes equations with the k-w SST turbulence model. The calculated geometry completely repeated the experimental one including the perforated surface. The numerical data were compared with experimental measurements obtained by the PIV method. Analysis of the data made it possible to find the limits of applicability of the numerical method for this flow.


2013 ◽  
Vol 3 (4) ◽  
Author(s):  
Alexander Kuzmin

AbstractTransonic flow past a Whitcomb airfoil and two modifications of it at Reynolds numbers of the order of ten millions is studied. The numerical modeling is based on the system of Reynolds-averaged Navier-Stokes equations. The flow simulations show that variations of the lift coefficient versus the angle of attack become more abrupt with decreasing curvature of the airfoil in the midchord region. This is caused by an instability of closely spaced local supersonic regions on the upper surface of the airfoil.


1983 ◽  
Vol 50 (2) ◽  
pp. 265-269
Author(s):  
D. Nixon

The perturbation theory for transonic flow is further developed for solutions of the Navier-Stokes equations in two dimensions or for experimental results. The strained coordinate technique is used to treat changes in location of any shock waves or large gradients.


2021 ◽  
Author(s):  
Chen Li ◽  
Peiting Sun ◽  
Hongming Wang

The leading-edge bulges along the extension direction are designed on the marine wingsail. The height and the spanwise wavelength of the protuberances are 0.1c and 0.25c, respectively. At Reynolds number Re=5×105, the Reynolds Averaged Navier-Stokes equations are applied to the simulation of the wingsail with the bulges thanks to ANSYS Fluent finite-volume solver based on the SST K-ω models. The grid independence analysis is carried out with the lift and drag coefficients of the wingsail at AOA = 8° and AOA=20°. The results show that while the efficiency of the wingsail is reduced by devising the leading-edge bulges before stall, the bulges help to improve the lift coefficient of the wingsail when stalling. At AOA=22° under the action of the leading-edge tubercles, a convective vortex is formed on the suction surface of the modified wingsail, which reduces the flow loss. So the bulges of the wingsail can delay the stall.


Sign in / Sign up

Export Citation Format

Share Document